Maths - Place Value

Small Steps:

1. Represent numbers to 1,000 .
2. Partition numbers to 1,000 .
3. Number line to 1,000 .
4. Thousands.
5. Represent numbers to 10,000.
6. Partition numbers to 10,000 .
7. Flexible partitioning of numbers to 10,000 .
8. Find $1,10,100,1000$ more or less.
9. Number line to 10,000 .
10. Estimate on a number line to 10,000.
11. Compare numbers to $10,00 \mathrm{C}$
12. Order numbers to 10,000 .

13. Roman numerals.
14. Round to the nearest 10.
15. Round to the nearest 100 .
16. Round to the nearest 1,000 .
17. Round to the nearest 10,100 or 1,000 .

Key Questions:

- What is the value of each base 10 piece/place value counter?
- How did you count the pieces?
- Does the order in which you build the number matter?
- Can you represent the number another way?
- How many hundreds/tens/ones are there in 465 ?
- How do you write a number that has zero tens/ones?
- What number is equal to $300+70+9$?
- What is the value of the missing part? How do you know?
- What is the value of the digit \qquad in the number \qquad ?
- What are the values at the start/end points of the number line?
- What is the difference in value between the start and end part-whole model points?
- How many intervals are there? What are they worth?

How can you work out the halfway point of an interval?

- What other numbers can you mark on the number line?
- Why are Stentrieptepdeases of a number line
- There are \qquad inppertans? \qquad tens and \qquad ones. The number is \qquad as a placeholder.
- ___ has ___ hundreds
\qquad , then we use \qquad ones. _ tens and \qquad
- $=$ \qquad $+$ \qquad $+$ \qquad
- The number that is made up of \qquad hundreds, \qquad tens and \qquad ones is
\qquad帾
parts
represent thousand ones tens hundreds zero placeholder base 10 place value 2-digit 3-digit 4-digit partition wholes expanded form number line label identify missing values difference start point end point midpoint dividing interval

Maths - Place Value

Small Steps:

1. Represent numbers to 1,00
2. Partition numbers to 1,000
3. Number line to 1,000 .
4. Thousands.
5. Represent numbers to 10,000 .
6. Partition numbers to 10,000 .
7. Flexible partitioning of numbers to 10,000 .
8. Find $1,10,100,1000$ more or less.
9. Number line to 10,000 .
10. Estimate on a number line to 10,000.
11. Compare numbers to 10,000 .
12. Order numbers to 10,000 .
13. Roman numerals.
14. Round to the nearest 10.
15. Round to the nearest 100.
16. Round to the nearest 1,000 .
17. Round to the nearest 10,100 or 1,000.

		7,000	8,000	9,000

Key Questions:

- Counting in 1,000 s from 3,000, what is the next number?
- Counting back in 1,000 's from 7,000 , tell me a number you would say. How do you know?
- How many thousands are there in 6,000 ?
- How many hundreds are there in 1,000 ?
- How many hundreds are the in 6,000 ?

YEAR 4

Key

Vocabulary:

thousand forwards backwards multiple number track ones
hundreds 4-digit equal to base 10 place value counters ten frame next previous numerals

Stem Sentences:

- The next multiple of 1,000 is \qquad
\qquad
- The previous multiple of $1,00 \overline{0}$ is -1 . \qquad thousands is equal to hundreds.
- thousands can be written in numerals as \qquad -.

Maths - Place Value

Small Steps:

1. Represent numbers to 1,000 .
2. Partition numbers to 1,000 .
3. Number line to 1,000 .
4. Thousands.
5. Represent numbers to 10,000 .
6. Partition numbers to 10,000 .
7. Flexible partitioning of numbers to 10,000.
8. Find $1,10,100,1000$ more or less.
9. Number line to 10,000 .
10. Estimate on a number line to 10,000.
11. Compare numbers to 10,000 .
12. Order numbers to 10,000 .
13. Roman numerals.
14. Round to the nearest 10.
15. Round to the nearest 100 .
16. Round to the nearest 1,000 .
17. Round to the nearest 10,100 or 1,000.

Key Questions:

- What number is represented?/What is the value of each digit?
- Represent 4,672 using base $10 /$ place value counters.
- How many thousands, hundreds, tens and ones are in the number__?
- How would you represent $6,000+0+60+9$
- How do you know the counter in the thousands column has a greater value than the counter in the ones column?
- What is the value of each digit in 4,715 ?
- Does the order in which you partition the number matter?
- What number is equal to $7,000+0+30+4$?
- What does a zero in a place value column tell you?
- How can you write the number using a part-whole model?
- What different multiples of 1,000 could be the first part?
- How does this affect the values of the other parts?
- What can you exchange the
thousands/hundreds/tens/ones digit for?
- How do y StemkSenterroes:given the parts?
- There are \qquad thousands, \qquad hundreds, \qquad tens and \qquad ones.
- The number is \qquad _.
- has
\qquad _ thousands, \qquad hundreds, \qquad tens and \qquad ones.
\qquad
\qquad $+$ \qquad $+$ $+$
-

\qquad thousands, \qquad hundreds, \qquad hundreds \qquad tens and \qquad ones or \qquad tens and \qquad ones.
. 1 -

Key Vocabulary:

thousand hundreds tens ones ten thousand place value Gattegno columns
times the size
a tenth the size zero
placeholder 4-digit partition numerals expanded form value part-whole partitioning omitted
flexible partitioning whole number parts addition subtraction exchanges

Maths - Place Value

Small Steps:

1. Represent numbers to 1,000.
2. Partition numbers to 1,000 .
3. Number line to 1,000 .
4. Thousands.
5. Represent numbers to 10,000.
6. Partition numbers to 10,000 .
7. Flexible partitioning of numbers to 10,000.
8. Find $1,10,100,1000$ more or less.
9. Number line to 10,000 .
10. Estimate on a number line to 10,000.
11. Compare numbers to 10,000.
12. Order numbers to 10,000 .
13. Roman numerals.
14. Round to the nearest 10.
15. Round to the nearest 100.
16. Round to the nearest 1,000 .
17. Round to the nearest 10, 100 or 1,000 .

Complete the sentences.

Key Questions:

- How many ones/tens/hundreds/thousands are in \qquad ?
- How will the number change if you add an extra $1 / 10 / 100 / 1,000$?

YEAR 4

Key

Vocabulary:

more less

The number is
1 less than the number is
10 less than the number is ___
100 less than the number is
1,000 less than the number is

The number is
1 more than the number is
10 more than the number is
100 more than the number is
1,000 more than the number is

The place value chart shows that 100 more than 4,932 is 5,032

Thousands	Hundreds	Tens	Ones
		0	0

- Which column changes if you find 1,000 more/less than a number?
- Can finding $1 / 10 / 100$ more/less change more than one column? When does this happen?
- Do you need to make an exchange?
- How can you find 100 less than 8,012 ? What exchange do you need to make?
- Which columns stay the same/change?

The place value chart shows that 10 less than 3,402 is 3,392

3-digit
4-digit
base 10
place value counters multiples zero placeholder columns change
stay the same ones
tens
hundreds thousands always sometimes never

Stem Sentences:

- There are \qquad tens/hundred/thousands in \qquad .
- 1 more/less than \qquad tens in \qquad tens.
\qquad more/less than \qquad
\qquad

Maths - Place Value

Small Steps:

1. Represent numbers to 1,000.
2. Partition numbers to 1,000 .
3. Number line to 1,000 .
4. Thousands.
5. Represent numbers to 10,000.
6. Partition numbers to 10,000 .
7. Flexible partitioning of numbers to 10,000.
8. Find $1,10,100,1000$ more or less.
9. Number line to 10,000 .
10. Estimate on a number line to 10,000.
11. Compare numbers to 10,000.
12. Order numbers to 10,000 .
13. Roman numerals.
14. Round to the nearest 10.
15. Round to the nearest 100.
16. Round to the nearest 1,000 .
17. Round to the nearest 10 , 100 or 1,000 .

What number does each midpoint represent?

- Alex and Dexter are marking 8,000 on the number line.

Whose method did you find easier?
Which method do you think is more accurate?

Key Questions:

- What are the values at the start and end points of the number line?
- What is the difference in value between the start and end points?
- How many intervals are there?
- How can you work out what each interval is worth?
- How can you work out the halfway point of an interval?
- What other numbers can you mark on the number line?
- Why are the start and end values of a number line important?
- What is the midpoint of the number line?
- How does knowing the midpoint help you to place the number on the number line?
- What other numbers could you mark on accurately?
- Which division is the arrow closer to? Is the number greater than or less than this value?
- How would splitting the line into more intervals help?
- How accurate getem Sentencespiate is?
- The difference in value between the start and end of the number line is \qquad .
- There are ___ intervals. Each interval is worth \qquad .
- The midpoint of the number line is \qquad .

YEAR 4

Key
 Vocabulary:

number line thousand
ten thousand label identify values
difference between start point midpoint end point dividing interval worth halfway estimate estimating additional one-quarter three-quarter closer less than greater than accurately
is closer to \qquad than \qquad .

Maths - Place Value

YEAR 4

Small Steps:

1. Represent numbers to 1,000.
2. Partition numbers to 1,000 .
3. Number line to 1,000 .
4. Thousands.
5. Represent numbers to 10,000.
6. Partition numbers to 10,000 .
7. Flexible partitioning of numbers to 10,000.
8. Find $1,10,100,1000$ more or less.
9. Number line to 10,000 .
10. Estimate on a number line to 10,000.
11. Compare numbers to 10,000.
12. Order numbers to 10,000 .
13. Roman numerals.
14. Round to the nearest 10.
15. Round to the nearest 100.

11 write the amounts in order. Start with the smallest amount.

Write the measurements in order. Start with the greatest measurement. $4,212 \mathrm{~m}$ $8,056 \mathrm{~m}$ 916 m $4,209 \mathrm{~m}$

Key Questions:

- What is the value of the first digit in \qquad ?
- What is the value of the \qquad digit in \qquad ?
- How many thousands/hundreds/tens/ones ar there?
- Which column do you start comparing from?
- Which digit in each number has the greatest value?
- What is the value of these digits?
- When comparing two numbers, if the first digits are equal in value, what do you look at next?
- Which is the greater number? How do you know?
- What is the difference between ascending and descending order?
- What is different about comparing numbers with the same number of digits and comparing numbers with different numbers of digits?

Stem Sentences:

- If the digits in the \qquad column are the same, I need to look in the \qquad column.
- ___ is greater than because...
is less than \qquad because..
- ___ is greater than \qquad , so \qquad thousand is greater than ___ thousand.
is
\qquad thousand. , so \qquad thousand is less than
\qquad
place value counters number lines same columns right digits order ascending descending
value zero placeholders comparisons

Maths - Place Value

Small Steps:

1. Represent numbers to 1,000.
2. Partition numbers to 1,000 .
3. Number line to 1,000 .
4. Thousands.
5. Represent numbers to 10,000.
6. Partition numbers to 10,000 .
7. Flexible partitioning of numbers to 10,000.
8. Find $1,10,100,1000$ more or less.
9. Number line to 10,000 .
10. Estimate on a number line to 10,000.
11. Compare numbers to 10,000.
12. Order numbers to 10,000 .
13. Roman numerals.
14. Round to the nearest 10.
15. Round to the nearest 100.
 - Complete the function machines.

- Write each number in Roman numerals.

- Four numbers are written in Roman numerals

What are the numbers?

- Each diagram should show a number in numerals, words and Roman numerals.
Complete the diagrams.

Choose the correct answer to each calculation.

Key Questions:

- What patterns can you see in the Roman number system?
- What rules do you use when converting numbers to Roman numerals?
- What letters are used in the Roman number system? What does each letter represent?
- How do you know what order to write the letters in when using Roman numerals?
- What is the same and what is different about representing the number twenty-nine in the Roman number system and our number system?

> - Write < > or = to complete the statements.

Key

Vocabulary:

roman numerals clock face
\square

Stem Sentences:

- The letter \qquad .
- I know \qquad is greater than \qquad because \qquad .

Maths - Place Value

Small Steps:

1. Represent numbers to 1,000.
2. Partition numbers to 1,000 .
3. Number line to 1,000 .
4. Thousands.
5. Represent numbers to 10,000.
6. Partition numbers to 10,000 .
7. Flexible partitioning of numbers to 10,000.
8. Find $1,10,100,1000$ more or less.
9. Number line to 10,000 .
10. Estimate on a number line to 10,000.
11. Compare numbers to 10,000.
12. Order numbers to 10,000 .
13. Roman numerals.
14. Round to the nearest 10.
15. Round to the nearest 100.
16. Round to the nearest 1,000 .
17. Round to the nearest 10, 100 or 1,000 .

\qquad
378 rounded to the nearest 10 is
375 rounded to the nearest 10 is

Round each number to the nearest 100

Each of the numbers round to 4,000 to the nearest 1,000
What could the missing digits be?

$$
\begin{array}{ll}
4,-28 & -, 842 \\
4,2 _8 & -, 482
\end{array}
$$

Key Questions:

- What is the multiple of $10 / 100 / 1,000$ after \qquad ?
- What is the multiple of $10 / 100 / 1,000$ before \qquad ?
- Which multiple of $10 / 100 / 1,000$ is \qquad closer to? How do you know?
- Which numbers rounded to the nearest 10/100/1,000 result in zero?
- Which place value column do you need to look at to decide which multiple to round to?
- What numbers when rounded to the nearest 10 give the result $50 / 500$?
- What is the same and what is different about rounding to the nearest 10,100 and 1,000 ?
- Round each number to the nearest 1,000

Stem Sentences:

- The two multiples of 10/100/1,000 the number lies between are \qquad and \qquad .
\qquad
- ___ is closer to \qquad than
- ___ rounded to the nearest $10 / 100 / 1,000$ is

YEAR 4

Key
 Vocabulary:

rounding
nearest 10
2-digit
previous next multiples 3-digit zero placeholder tens column number lines closer to after before
place value nearest 100 same different
nearest 1,000
hundreds between above round to

Maths - Place Value

Small Steps:

1. Represent numbers to 1,000.
2. Partition numbers to 1,000 .
3. Number line to 1,000 .
4. Thousands.
5. Represent numbers to 10,000.
6. Partition numbers to 10,000 .
7. Flexible partitioning of numbers to 10,000.
8. Find $1,10,100,1000$ more or less.
9. Number line to 10,000 .
10. Estimate on a number line to 10,000.
11. Compare numbers to 10,000.
12. Order numbers to 10,000 .
13. Roman numerals.
14. Round to the nearest 10.
15. Round to the nearest 100.
16. Round to the nearest 1,000 .
17. Round to the nearest 10, 100 or 1,000.

Key Questions:

- What is the multiple $10 / 100 / 1,000$ after \qquad ?
- What is the multiple of $10 / 100 / 1,000$ before \qquad
- Which multiple of $10 / 100 / 1,000$ is \qquad closer to? How do you know?
- Which numbers rounded to the nearest 10/100/1,000 result in zero?
- Which place value column do you need to look at to decide which multiple to round to?
- What is the same and what is different about rounding to the nearest 10,100 and 1,000 ?

Number	7,126	4,996	2,006	499
Rounded to the nearest 10				
Rounded to the nearest 100				
Rounded to the nearest 1,000				

YEAR 4

Key
 Vocabulary:

nearest 10
nearest 100
nearest 1,000
columns same different rounding place value previous next multiple accuracy after before closer to zero accuracy

Stem Sentences:

- The two multiples of $10 / 100 / 1,000$ the number lies between are \qquad and \qquad .
\qquad is closer to \qquad than \qquad
- ___ rounded to the nearest $10 / 100 / 1,000$ is

Small Steps:

1. Add and subtract 1s, 10s, 100s and 1,000s.
2. Add up two 4-digit numbers - no exchange.
3. Add two 4-digit numbers - one exchange.
4. Add two 4-digit numbers - more than one exchange.
5. Subtract two 4-digit numbers - no exchange.
6. Subtract two 4-digit numbers - one exchange.
7. Subtract two 4-digit numbers - more than one exchange.
r
i

What mistake has Rosie made?

Key Questions:

If you know $2+4=6$, what else do you know? How will your partition \qquad ? Why?
Will the value in the ones/tens/hundreds/thousands column increase or decrease? By how much? Which place value columns have changed/stayed the same? Why? What is the inverse of subtracting 300 ?

Stem Sentences:

- The next/previous multiple of $10 / 100 / 1000$ is \qquad .
- I can partition \qquad into \qquad and \qquad because...
\qquad column will increase/decrease by

Vocabulary:

add/adding/addition subtract/subtracting subtraction ones tens hundreds 3-digit/4-digit mental strategy crossing a multiple multiples columns always sometimes never change exchange partition value increase decrease place value inverse next previous partition value

Maths - Addition and Subtraction

Key Questions:

- How can you represent the question using base 10 ?
- How can you put these numbers into a place value chart?
- Does it matter which columns you add together first?
- Do you have enough ones/tens/hundreds to make an exchange?
- What do you write in the tens column if there are no tens?
- How many thousands/hundreds/tens/ones are there altogether?
- What is \qquad more than \qquad ?
- When exchanging 10 hundreds, where do you out the thousand?
- How can you make an exchange in more than one column in the sgterppdeqnlences:
\qquad ones added to \qquad ones is equal to \qquad ones.
added to \qquad is equal to \qquad -
- I have ___ ones/tens/hundreds, so I do/do not need to make an exchange.
- I can exchange 10 \qquad for 1 \qquad .
- ___ plus ___ plus the 1 that I exchanged from the last column is equal to \qquad -.

Small Steps:

1. Add and subtract 1s, 10s, 100s and 1,000s.
2. Add up two 4-digit numbers - no exchange.
3. Add two 4-digit numbers - one exchange.
4. Add two 4-digit numbers - more than one exchange.
5. Subtract two 4-digit numbers - no exchange.
6. Subtract two 4-digit numbers - one exchange.
7. Subtract two 4-digit numbers - more than one exchange.

YEAR 4

Key

Vocabulary:
formal written method 2-digit
3-digit
exchange
4-digit
add/addition/adding subtract/subtraction subtracting digits ones tens
hundreds thousands column equal to place value smallest value column more than altogether plus

Maths - Addition and Subtraction

Key Questions:

- How can you show this question using place value counters?
- What is \qquad less than \qquad ?
- Does it matter which column you subtract first?
- Do you need to make an exchange?
- Do you have enough ones/tens/hundreds to subtract \qquad ?
- How can you subtract two numbers if one of them has fewer digits than the other?
- If you cannot exchange from tens/hundreds, what do you need to do?
- Which column can you exchange from?

Key Vocabulary:

Small Steps:

1. Add and subtract 1 s , 10s, 100s and 1,000s.
2. Add up two 4-digit numbers - no exchange.
3. Add two 4-digit numbers - one exchange.
4. Add two 4-digit numbers - more than one exchange.
5. Subtract two 4-digit numbers - no exchange.
6. Subtract two 4-digit numbers - one exchange.
7. Subtract two 4-digit numbers - more than one exchange.

- Find the missing numbers.

Maths - Addition and Subtraction

YEAR 4

Small Steps:

1. Add and subtract 1 s , 10s, 100s and 1,000s.
2. Add up two 4-digit numbers - no exchange.
3. Add two 4-digit numbers - one exchange.
4. Add two 4-digit numbers - more than one exchange.
5. Subtract two 4-digit numbers - no exchange.
6. Subtract two 4-digit numbers - one exchange.
7. Subtract two 4-digit numbers - more than one exchange.
8. Efficient subtraction.
9. Estimate answers
10. Checking strategies.

Whose method do you prefer? Why?
Which is the most efficient method?

Complete each subtraction
What do you notice?
What stays the same?
What changes?

Key Questions:

- Which method do you find easiest? Why?
- Which method is most efficient?
- Can you work this out mentally?
- What does "difference" mean?
- What does the arrow represent? What do you notice about all the arrows?
- Why does adding/subtracting \qquad to/from each number make the calculation easier?
- Eva is working out 357-199

If I add or subtract the same amount from both numbers, the difference will be the same. $358-200=158$
so $357-199=158$

Stem Sentences:

- The jump to the next multiple of ___ is \qquad .
- If I add/subtract \qquad to/from both numbers, the difference will be the same.

Key

 Vocabulary:mental method written method subtraction calculation strategies jottings efficient
constant difference adding addition add amount exchanges multiple number line represent

Maths - Addition and Subtraction

Small Steps:

1. Add and subtract 1 s , 10s, 100s and 1,000s.
2. Add up two 4-digit numbers - no exchange.
3. Add two 4-digit numbers - one exchange.
4. Add two 4-digit numbers - more than one exchange.
5. Subtract two 4-digit numbers - no exchange.
6. Subtract two 4-digit numbers - one exchange.
7. Subtract two 4-digit numbers - more than one exchange.
8. Efficient subtraction.
9. Estimate answers
10. Checking strategies.

- Use the number lines to help you complete the sentences.

1,880 rounded to the nearest thousand is

3,341 rounded to the nearest thousand is \qquad

The children are estimating the answer

Which children have rounded correctly?

What mistake has been made? Whose calculation was easiest?

Whose estimate was most accurate?

Key Questions:

- What multiple of 10/100/1,000 comes before and after \qquad ?
- Where would \qquad be on this number line?
- Which multiple is \qquad closer to?
- Which calculation is easier/quicker to perform? Why?
- Why do we use estimates?
- Is the estimate less than or greater than the actual answer? Why?
- Write < or > to complete the statements.

Stem Sentences:

 is closer to \qquad than $\qquad$$\qquad$ is \qquad .

- The estimate will be \qquad than the actual answer because..

YEAR 4

Key

 Vocabulary:estimating estimate rounding rounded nearest 10/100/1,000 number line representation near to calculated calculation greater than less than previous multiple before after closer to

Maths - Addition and Subtraction

YEAR 4

Small Steps:

1. Add and subtract 1 s , 10s, 100s and 1,000s.
2. Add up two 4-digit numbers - no exchange.
3. Add two 4-digit numbers - one exchange.
4. Add two 4-digit numbers - more than one exchange.
5. Subtract two 4-digit numbers - no exchange.
6. Subtract two 4-digit numbers - one exchange.
7. Subtract two 4-digit numbers - more than one exchange.
8. Efficient subtraction.
9. Estimate answers
10. Checking strategies.

- Complete the part-whole models and number sentences.

> How could you check your answers?

Key Questions:

- What are the parts? What is the whole?
- Given one fact, what other facts can you write?
- What does "inverse" mean?
- What is the inverse of add/subtract ?
- Is addition/subtraction commutative?
- Which subtractions can be used to check the addition $1,574+3,432=5,006$?

- Which additions can be used to check the subtraction $3,265-823=2,442$?

Key

 Vocabulary: inverse relationship addition add subtraction subtractoperations commutative bar model part-whole model accuracy estimations alternative checking strategy parts whole

- Use an inverse operation to check each calculation.

How many different inverse calculations can you do for each?

Stem Sentences:

- The inverse of \qquad
- If \qquad is a part and \qquad is a part, then \qquad is the whole.
- If \qquad is the whole and \qquad is a part, then \qquad is the other part.
- To check I have added/subtracted \qquad correctly, I

Small Steps:

1. Multiples of 3.
2. Multiply and divide by 6.
3. 6 times-table and division facts.
4. Multiply and divide by 9.
5. 9 times-table and division facts.
6. The 3,6 and 9 times-tables.
7. Multiply and divide by 7 .
8. 7 times-table and division facts.
9. 11 times-table and division facts.
10. 12 times-table and division facts.
11. Multiply by 1 and 0 .
12. Divide a number by 1 and itself.
13. Multiply three numbers.

- Complete the number track.

Tiny is counting in 3 s .

Key Questions:

- What is the next multiple of 3 ?
- What is the multiple of 3 before ?
- How many 3s are there in \qquad ?
- How do you find the digit sum of a number?
- How can you tell if a number is a multiple of 3 ?
- Are the multiples of 3 odd or even?

Complete the statements.

Find the digit sum of each number
What do you notice?

Key

Vocabulary:

 multiplying 3stimes-table
multiples
number tracks
h. nndred squares digit sum

Stem Sentences:

- The next multiple of 3 is \qquad is \qquad _.
- The multiple of 3 before \qquad is \qquad -
- I know \qquad is a multiple of 3 because...

Small Steps:

1. Multiples of 3.
2. Multiply and divide by 6.
3. 6 times-table and division facts.
4. Multiply and divide by 9.
5. 9 times-table and division facts.
6. The 3,6 and 9 times-tables.
7. Multiply and divide by 7.
8. 7 times-table and division facts.
9. 11 times-table and division facts.
10. 12 times-table and division facts.
11. Multiply by 1 and 0 .
12. Divide a number by 1 and itself.
13. Multiply three numbers.

Complete the sentences.

There are__boxes.
Each box contains_eggs.
There are___eggs in total.
$\square \times-$

Match the inverse operations.
$7 \times 6=42$
$18+6=3$
$3 \times 6=18$
$72 \div 6=12$

$9 \times 6=54$

$54 \div 6=9$
$12 \times 6=72$

Key Questions:

- How many equal groups do you have?
- How many are there in each group?
- How many are there altogether?
- What does each number in the calculation represent?
- What does commutative mean?
- Is multiplication/division commutative?
- How can you use facts from the 3 times-table to work out facts from the 6 times-table?
- How can you use facts from the 3 times-table to work out facts in the 6 times-table?
- How can you use facts from the 5 times-table to work out facts in the 6 times-table?
- If you know a multiplication sentence, what division sentences can you find?
- What is the fact family for the calculation?

Stem Sentences:

- 6 lots of \qquad is \qquad
- ___ shared into 6 equal groups is ____. .

Key Vocabulary:

3s
times-table 6s multiply multiplication
fact families double 5's
commutative values division divide inverse equal groups altogether calculation represent lots of shared

- Multiplying by 6 is the same as multiplying by \qquad twice.
- ___ $\times 6=$ double \qquad $\times 3$
- 6 multiplied by___ is equal to \qquad -.
- \quad _ $6=$ double \qquad x 3
-$\times 6=$ \qquad x $5+$ \qquad \div \qquad

Maths - Multiplication and Division A

Small Steps:

1. Multiples of 3.
2. Multiply and divide by 6.
3. 6 times-table and division facts.
4. Multiply and divide by 9 .
5. 9 times-table and division facts.
6. The 3,6 and 9 timestables.
7. Multiply and divide by 7 .
8. 7 times-table and division facts.
9. 11 times-table and division facts.
10. 12 times-table and division facts.
11. Multiply by 1 and 0 .
12. Divide a number by 1 and itself.
13. Multiply three numbers.

Key Questions:

- How many equal groups are there?
- How many are there in each group?
- How many are there altogether?
- How can you use the 10 times-table to work out the 9 times-table?
- What does each number in the calculation represent?
- What patterns can you see in the 9 times-table?
- How could you use the 10 times-table to work out the 9 times-table?
- If you know a multiplication sentence, what division sentences can you find?
- How can you tell if a number is a multiple of 9 ?
- How can you use the 3 times-table to work out facts in the 9 times-table?

Stem Sentences:

- 9 lots of \qquad is equal to \qquad .
- ___ groups of \qquad is equal to \qquad groups of \qquad .x $10=$ \qquad so $\times 9=$ \qquad roups of \qquad -
$\times 9=$ \qquad $\times 9$ + $\times 9$
\qquad $\times 9=$ \qquad - \qquad $=$ $\div 9=$ \qquad
- Multiplying by 9 is the same as multiplying by \qquad and then multiplying by \qquad again.

YEAR 4

Key Vocabulary:

9s

times-table

 patterns unknown number facts known facts subtracting subtractsubtraction
10s
tripling
commutative division
divide inverse multiplication multiply equal groups altogether calculation represent lots of equivalent multiple digit sum

Maths - Multiplication and Division A

Small Steps:

1. Multiples of 3.
2. Multiply and divide by 6.
3. 6 times-table and division facts.
4. Multiply and divide by 9 .
5. 9 times-table and division facts.
6. The 3,6 and 9 times-tables.
7. Multiply and divide by 7.
8. 7 times-table and division facts.
9. 11 times-table and division facts.
10. 12 times-table and division facts.
11. Multiply by 1 and 0 .
12. Divide a number by 1 and itself.
13. Multiply three numbers.

Here is a hundred square.

- Circle the multiples of 3 in one colour.
- Circle the multiples of 6 in another colour.
- Circle the multiples of 9 in a third colour.

What do you notice?

Here are three number tracks for the 3,6 and 9 times-tables.
Complete the number tracks.

Key Questions:

What links can you see between the 3 and 6 timestables?

- What links can you see between the 3 and 9 timestables?
- What other times-tables can you use to help find the multiplication facts?
- If you know one multiplication fact, what other multiplication facts do you know? What division facts do you know?
- Ho

Dora has made an array to show 9×5

that 9 lots of 5 is
equal to 3 lots of 5
plus 6 lots of 5

Stem Sentences:

- Double \qquad x $3=$ \qquad $\times 6$
- Triple \qquad $\times 3=$ \qquad $\times 9$
- 3 lots of ___ and 6 lots of \qquad $=9$ lots of \qquad -

Key

 Vocabulary:
3s

times-tables arrays
hundred squares
number facts patterns links multiply multiplication facts divide division multiple double triple lots of
\qquad

Maths - Multiplication and Division A

Small Steps:

1. Multiples of 3.
2. Multiply and divide by 6 .
3. 6 times-table and division facts.
4. Multiply and divide by 9.
5. 9 times-table and division facts.
6. The 3,6 and 9 times-tables.
7. Multiply and divide by 7 .
8. 7 times-table and division facts.
9. 11 times-table and division facts.
10. 12 times-table and division facts.
11. Multiply by 1 and 0 .
12. Divide a number by 1 and itself.
13. Multiply three numbers.

Key Questions:

- How many equal groups are there?
- How many lots of 7 do you have?
- How many groups of 7 are there in \qquad ?
- What can you partition \qquad into to help you multiply

Rosie draws a picture to represent 7×4 in two different ways.

Amir is using partitioning to help him work out 7×7

YEAR 4

Key

 Vocabulary:multiples
7s
link
repeated addition multiplication equal groups multiplying
flexible partitioning divided division divide sharing
lots of partition
fact dividing fact families unknown facts known facts mental strategies calculation
arrays
same different

Small Steps:

1. Multiples of 3.
2. Multiply and divide by 6.
3. 6 times-table and division facts.
4. Multiply and divide by 9.
5. 9 times-table and division facts.
6. The 3,6 and 9 timestables.
7. Multiply and divide by 7.
8. 7 times-table and division facts.
9. 11 times-table and division facts.
10. 12 times-table and division facts.
11. Multiply by 1 and 0 .
12. Divide a number by 1 and itself.
13. Multiply three numbers.

Maths - Multiplication and Division A

Kev Questions:

- How many equal groups are there?
- How many lots of 11 do you have?
- How many groups of 11 are there in \qquad ?
- What can you partition 11 into to help you?
- How can you use base 10 to work out \qquad $\times 11$?
- How can you use place value counters to work out $\div 11$?
- How can you show this using an array?
- How many lots of 12 do you have?
- How many groups of 12 are there in \qquad ?
- What can you partition 12 into to help you?
- How can you use base 10 to work out \qquad $\times 12 ?$

- How can you use place value counters to work out
\qquad $\div 12$?

Key

Vocabulary:

1s

10s
times-table 11's partition known facts multiply multiply
multiplying multiple links patterns connections dividing dividing
sharing equal groups commutativity lots of base 10 array
\qquad $x 11=$

Stem Sentences:

\qquad x 1

- There are ___groups of 11 in 12s
- There are 11 groups of \qquad in \qquad doubling patterns onnection

$\times 12=$ \qquad $\times 1$ - \qquad $\times 2$
- __ $\times 12=$ double__ $\times 6$
- There are 12 groups of ___ in \qquad -.
- There are \qquad groups of 12 in \qquad -.

YEAR 4

 표퓨묘 10

$$
1 \times 12=12
$$

$$
2 \times 12=24
$$

$3 \times 12=36$

Small Steps:

1. Multiples of 3.
2. Multiply and divide by 6.
3. 6 times-table and division facts.
4. Multiply and divide by 9.
5. 9 times-table and division facts.
6. The 3,6 and 9 timestables.
7. Multiply and divide by 7.
8. 7 times-table and division facts.
9. 11 times-table and division facts.
10. 12 times-table and division facts.
11. Multiply by 1 and 0 .
12. Divide a number by 1 and itself.
13. Multiply three numbers.

There are 4 plates.

Each plate has zero apples on it.

How many apples are there in total?
Complete the multiplication
$4 \times$ \qquad
\qquad

```
3 lots of 0
```



```
3 lots of }
```


Key Questions:

- What does "zero" mean? How can you multiply by zero?
- What do you notice about the results of multiplying numbers by zero?
- What does "multiplying by 1 " mean?
- What do you notice about the results of multiplying numbers by 1 ?

Key

Vocabulary:

multiplying
zero
one lots of equal same difference itself

- What is the same and what is different about groups multiplying by 1 and multiplying by zero?

Stem Sentences:

- Any number multiplied by zero is equal to \qquad -.
- Any number multiplied by 1 is equal to \qquad .
- ___ groups of one = \qquad 1 lot of 3
groups of zero = \qquad

Small Steps:

1. Multiples of 3.
2. Multiply and divide by 6.
3. 6 times-table and division facts.
4. Multiply and divide by 9.
5. 9 times-table and division facts.
6. The 3,6 and 9 timestables.
7. Multiply and divide by 7.
8. 7 times-table and division facts.
9. 11 times-table and division facts.
10. 12 times-table and division facts.
11. Multiply by 1 and 0 .
12. Divide a number by 1 and itself.
13. Multiply three numbers.

Key Questions:

- How many equal groups of \qquad can you make?
- What is \qquad shared equally into 1 group?
- What is \qquad grouped into groups of 1?
- What is the same and what is different about multiplying by 1 and dividing by 1 ?
- What is the same and what is different about dividing a number by 1 and dividing a number by itself?

Which of the divisions have an answer of 1 ?
$100 \div 100 \quad 2 \div 1 \quad 10 \div 5$

YEAR 4

Key

 Vocabulary:division divide by 1 itself groups grouped equal shared same different multiplying

The pears are shared between 3 children. How many pears does each child get? $3 \div 3=$ \qquad
Without working out the divisions, write <, > or = to compare the statements.

Stem Sentences:

- When you divide a number by itself, the answer is..
- When you divide a number by \qquad , the number remains the same.
- There are \qquad 1 s in \qquad .

$7+$ \qquad 1.

Maths - Multiplication and Division A

Small Steps:

1. Multiples of 3.
2. Multiply and divide by 6.
3. 6 times-table and division facts.
4. Multiply and divide by 9.
5. 9 times-table and division facts.
6. The 3,6 and 9 timestables.
7. Multiply and divide by 7.
8. 7 times-table and division facts.
9. 11 times-table and division facts.
10. 12 times-table and division facts.
11. Multiply by 1 and 0 .
12. Divide a number by 1 and itself.
13. Multiply three numbers.

Complete the workings,

How does the array show $(4 \times 2) \times 5$?

Key Questions:

- Do you have to multiply the numbers from left to right?
- Which pair(s) of numbers do you know the product of?
- How will you decide which order to do the multiplication in?
- What is the same about these calculations/arrays?
- Which order do you find easier to calculate efficiently?
- If you worked out the calculation in a different order, would you get a different answer? Why? Why not?

Is the statement true or false?

```
9\times8=9\times4\times2
```

Explain your reasoning.

Whose method do you prefer?
Is one method more efficient than the other?

Stem Sentences:

- I am going to work out ___ x ___ first, because...
- To work out \qquad x \qquad I can first calculate and then multiply the answer by \qquad -.
- If \qquad x \qquad $=$ \qquad , then \qquad x \qquad x \qquad $=$ \qquad

Choose three digit cards

Find the product of your digit cards. How many different calculations can you make?
What is the most efficient order to use to work out the product?

YEAR 4

Key

Vocabulary:

multiplication three
associative law commutativity order change group efficiently counters cubes multiply
left right pairs product calculations arrays

 nen eft
\qquad x \qquad

Maths - Multiplication and Division B

Small Steps:

1. Factor pairs.
2. Use factor pairs.
3. Multiply by 10 .
4. Multiply by 100
5. Divide by 10
6. Divide by 100 .
7. Related facts multiplication and division.
8. Informal written methods for multiplication.
9. Multiply a 2-digit number by a 1 -digit number.
10. Multiply a 3-digit number by a 1-digit number.
11. Divide a 2-digit number by a 1-digit number (1)
12. Divide a 2-digit number by a 1-digit number (2)
13. Divide a 3-digit number by a 1-digit number
14. Correspondence problems.
15. Efficient multiplication.

Complete the factor pairs of 12 and the sentences.

Use counters to create arrays and find the factor pairs for each number.

Complete the factor bug for 20

Key Questions:

- How can you use arrays to help you find all the factors of a number?
- How do you know that you have found all the factors of ?
- How do arrays help you to see when a number is not a factor of another number?
- Which number is a factor of every whole number?
- Do factors always come in pairs?
- Do whole numbers always have an even number of factors?
- How does knowing the factor pairs of 8 help you to find an equivalent calculations to 7×8 ?
- For which number are you going to find the factor pairs?
- Which factor pair is the most helpful to solve the calculation?
- In what order are you going to multiply these numbers?
- Does it matter which factor pair you use?

YEAR 4

Key

Vocabulary:

factors multiply whole product factor pair divides exactly arrays multiplication division
equivalent calculations easiest mentally times-tables
\qquad Stem Sentences:

- ___ has ___ factors altogether
- The factor pairs of \qquad are \qquad
\qquad x \qquad x \qquad
- 12 = \qquad \times \qquad so \qquad $\times 12=$ \qquad to find an equivalent calculation because....

Small Steps:

1. Factor pairs.
2. Use factor pairs.
3. Multiply by 10 .
4. Multiply by 100.
5. Divide by 10
6. Divide by 100 .
7. Related facts multiplication and division.
8. Informal written methods for multiplication.
9. Multiply a 2-digit number by a 1 -digit number.
10. Multiply a 3-digit number by a 1-digit number.
11. Divide a 2-digit number by a 1 -digit number (1)
12. Divide a 2-digit number by a 1-digit number (2).
13. Divide a 3-digit number by a 1-digit number.
14. Correspondence problems.
15. Efficient multiplication.

Maths - Multiplication and Division B

Use the base 10 to complete the sentences.

Key Questions:

- What do you notice when multiplying by $10 / 100$?
- What is a placeholder? When do you use placeholders?
- What happens to the digits in a number when you multiply by 10/100?
- How can you use a place value chart to show multiplying
\qquad by 10/100?
- What is \qquad multiplied by 10?

YEAR 4

Key

Vocabulary:

multiplying
ten
times the size
one
hundred
place value digits

- What is 10 lots of ___?
- How can you use multiplying by 10 to help you multiply by 100?
- What is \qquad multiplied by 100? move
Mo represents 21×10 using place value counters.

What is 21×10 ?
Dexter uses a place value chart to work out 32×10

- What is 100 lots of \qquad ?

There are 8 jars.

Each jar contains 100 draving pins.
How many drawing pins are there altogether?

Stem Sentences:

$\times 10=$ \qquad
Write $<,>$ or = to compare the multiplications.

- $10 x$
\qquad is 10 times the size of $\qquad$$\times 100=$ \qquad $\times 10 \times 10=$ \qquad x $10=$ \qquad
- \qquad $\times 100=$ \qquad _, so $100 \times$ \qquad $=$ aceholder column whole number lots of
is 100 times the size of \qquad
\qquad *

Small Steps:

1. Factor pairs.
2. Use factor pairs.
3. Multiply by 10 .
4. Multiply by 100.
5. Divide by 10
6. Divide by 100 .
7. Related facts multiplication and division.
8. Informal written methods for multiplication.
9. Multiply a 2-digit number by a 1 -digit number.
10. Multiply a 3-digit number by a 1-digit number.
11. Divide a 2-digit number by a 1 -digit number (1)
12. Divide a 2-digit number by a 1-digit number (2).
13. Divide a 3-digit number by a 1-digit number.
14. Correspondence problems.
15. Efficient multiplication.

Maths - Multiplication and Division B

Use the ten frame and counters to complete the sentences.

There are \qquad groups of 100 in 400
$400 \div 100=$ \qquad

Complete the calculation shown by the array.

$50=\ldots$ groups of 10
$50 \div 10=$ \qquad

Key Questions:

What do you notice when dividing by 10?
Why does this happen?
What happens to the digits when you divide by 10/100?
How can you use a place value chart to show dividing \qquad by $10 / 100$?
What is \qquad divided by 10/100?
What number is one-tenth the size of \qquad ?

- What happens when you divide a number by 10 and then divide the answer by 10 again? How does the final answer compare to the original number?

YEAR 4

Key

Vocabulary:

divide

 whole numbers
ten

one-tenth
one-tenth the size
place value digits
position
calculation
one place column right multiplying

- How can you use dividing by 10 to help you divide by 100? inverse zero hundred one-hundredth one-hundredth the size two places

Stem Sentences:

- What number is one-hundredth the size of ____?

Maths - Multiplication and Division B

Small Steps:

1. Factor pairs.
2. Use factor pairs.
3. Multiply by 10 .
4. Multiply by 100.
5. Divide by 10
6. Divide by 100
7. Related facts multiplication and division.
8. Informal written methods for multiplication.
9. Multiply a 2-digit number by a 1-digit number.
10. Multiply a 3 -digit number by a 1-digit number.
11. Divide a 2-digit number by a 1-digit number (1)
12. Divide a 2-digit number by a 1-digit number (2)
13. Divide a 3-digit number by a 1-digit number.
14. Correspondence problems.
15. Efficient multiplication.

Write two multiplication facts and two division facts represented by each array.

What is the same and what is different about the arrays?

Key Questions:

- What is the same and what is different about the two calculations?
- How can you represent the calculation using place value counters?
- How does knowing that \qquad help you to complete the calculation?
- What calculation do you know that would help with this one?

Write < , > or = to compare the calculations.

is 10 times the size of \qquad

Is the statement true or false?

$$
6 \times 800=8 \times 600
$$

YEAR 4

Key

Vocabulary:

calculations related known facts scaling facts

Explain your answer.

Stem Sentences:

\qquad x ___ ones is equal to \qquad ones, so \qquad x ___ tens is equal to \qquad tens.\div is equal to \qquad
\qquad tens \div \qquad is equal to \qquad tens.

Maths - Multiplication and Division B

Small Steps:

1. Factor pairs.
2. Use factor pairs.
3. Multiply by 10 .
4. Multiply by 100.
5. Divide by 10
6. Divide by 100 .
7. Related facts multiplication and division.
8. Informal written methods for multiplication.
9. Multiply a 2-digit number by a 1 -digit number.
10. Multiply a 3-digit number by a 1-digit number.
11. Divide a 2-digit number by a 1 -digit number (1)
12. Divide a 2-digit number by a 1-digit number (2).
13. Divide a 3-digit number by a 1-digit number.
14. Correspondence problems.
15. Efficient multiplication.

Tens	Ones
\|imime	everee
T171TM	
प171710	Encene
T1717T	
य101010	eremer
T17171T	

Key Questions:

- What is the same and what is different about multiplying by 1 s and multiplying by 10 s ?
- How would you explain this method? \qquad ?
- What is the most efficient way to work out x
- How could you use a number line to work out this calculation?
- How could you use a part-whole model to partition into tens and ones?

Use Ron's method to work out the multiplications.

Stem Sentences:

Use Teddy's method to work out the multiplications.

$$
7 \times 16
$$

6×34
4×27
 Complete the number line.
\qquad pa
x \qquad = \qquad tens x \qquad $+$ \qquad ones x
\qquad .
\qquad
\qquad tens + \qquad ones = \qquad _.
\qquad正

YEAR 4

Key

Vocabulary:

informal
written method 2-digit multiply number 1-digit place value multiples repeated addition partition tens ones
part-whole model number lines same/different efficient calculation

Maths - Multiplication and Division B

Small Steps:

1. Factor pairs.
2. Use factor pairs
3. Multiply by 10 .
4. Multiply by 100.
5. Divide by 10
6. Divide by 100
7. Related facts multiplication and division.
8. Informal written methods for multiplication.
9. Multiply a 2-digit number by a 1 -digit number.
10. Multiply a 3-digit number by a 1-digit number.
11. Divide a 2-digit number by a 1 -digit number (1)
12. Divide a 2-digit number by a 1-digit number (2).
13. Divide a 3-digit number by a 1-digit number.
14. Correspondence problems.
15. Efficient multiplication.

Dora uses place value counters alongside the written multiplication to work out 34×2

Tens	Ones
000	0000
000	0000

Key Questions

- What is the same and what is different about multiplying by 1 s and multiplying by 10s?
- How does the written method match the representation?
- Which column should you start with?
- What is the same and what is different about the different methods?

Here are three incorrect multiplications.

What mistakes have been made?
Complete the calculations correctly.

Stem Sentences:

\qquad ones x \qquad $=$ \qquad ones

- To multiply a 2-digit number by by \qquad you multiply

[^0]jo uses place value counters to work out 24×3

the \qquad by \qquad and the \qquad by \qquad _.

- ___ tens multiplied by
\qquad plus the ten I exchange is equal to \qquad tens.

YEAR 4

Key

Vocabulary:

multiplying informal written methods formal written methods short multiplication method expanded form
formal short single-line form calculations exchanges place value same/different
ones
tens
column
equal

Maths - Multiplication and Division B

Small Steps:

1. Factor pairs.
2. Use factor pairs.
3. Multiply by 10 .
4. Multiply by 100.
5. Divide by 10
6. Divide by 100
7. Related facts multiplication and division.
8. Informal written method for multiplication.
9. Multiply a 2-digit number by a 1 -digit number.
10. Multiply a 3-digit number by a 1-digit number.
11. Divide a 2-digit number by a 1-digit number (1).
12. Divide a 2-digit number by a 1-digit number (2).
13. Divide a 3-digit number by a 1-digit number.
14. Correspondence problems.
15. Efficient multiplication.

A school has 4 house teams.
There are 234 children in each house team.
How many children are there altogether?

Complete the calculations.

Key Questions:

- How could you use counters to represent the multiplication?
- How does the written method match the representation?
- Which column should you start with?
- Do you need to make an exchange? What exchange can you make?
- What is the same and what is different about multiplying a 3-digit number by a 1-digit number and multiplying a 2digit number by a 1 -digit number?

Arrange the digit cards in the multiplication.

What is the greatest possible product?
Now arrange the cards to make the smallest possible product.
\qquad

- ___ tens X $-$ hundreds.
- ___ tens/hundreds multiplied by \qquad plus the ten/hundred from the exchange is equal to

YEAR 4

Key

 Vocabulary: formal written method multiplying 3-digit number 1-digit number short multiplication columns place value exchanges tens ones hundreds thousands expanded method same/different equal to
Small Steps:

1. Factor pairs.
2. Use factor pairs.
3. Multiply by 10 .
4. Multiply by 100.
5. Divide by 10
6. Divide by 100 .
7. Related facts multiplication and division.
8. Informal written methods for multiplication.
9. Multiply a 2-digit number by a 1 -digit number.
10. Multiply a 3-digit number by a 1-digit number.
11. Divide a 2-digit number by a 1-digit number (1)
12. Divide a 2-digit number by a 1-digit number (2).
13. Divide a 3-digit number by a 1-digit number.
14. Correspondence problems.
15. Efficient multiplication.

Maths - Multiplication and Division B

Teddy uses a place value chart to divide 84 by 4
(ㄷ) (1) () (1) (1) (1) (1) (1) (1)

Tens	Ones
-1)	(1)
(1)	(1)
(1)	(1)
(1)	(1)

Use Teddy's method to work out the divisions.

Complete the calculations.

Key Questions:

- How do you partition a 2-digit number into tens and ones? How else can you partition a 2-digit number?
- Which is the most efficient way to partition the number so you can divide both parts by \qquad ?
- If you cannot share all of the tens equally, what do you need to do?
How can you represent the division using a part-whole model?

Key

division
dividing
2-digit
1-digit
tens
ones
remainders
exchange
place value

- Can the counter be shared equally? If not, how many are formal short division left over?
part-whole model
- What does "remainder" mean?
partition
- What is the greatest remainder you can have when you are dividing by \qquad ?
- How can you partition a 2-digit number?
- If you cannot share all the tens equally, what do you need to do?
efficient
equally
calculation
greater
left over
- If you cannot share all the ones equally, what happens? share
- How do you know that $43 \div 2$ will have a remainder?

Stem Sentences:

\qquad tens divided by \qquad $=$ \qquad tens each

- ___ ones divided by \qquad $=$ \qquad ones each.
- I cannot share all of the tens equally, so I need to...
- If I am dividing by \qquad , then the greatest possible remainder is \qquad —.

Maths - Multiplication and Division B

Small Steps:

1. Factor pairs.
2. Use factor pairs.
3. Multiply by 10 .
4. Multiply by 100.
5. Divide by 10
6. Divide by 100
7. Related facts multiplication and division.
8. Informal written methods for multiplication.
9. Multiply a 2-digit number by a 1 -digit number.
10. Multiply a 3-digit number by a 1-digit number.
11. Divide a 2-digit number by a 1 -digit number (1)
12. Divide a 2-digit number by a 1-digit number (2).
13. Divide a 3-digit number by a 1-digit number.
14. Correspondence problems.
15. Efficient multiplication.

Key Questions:

- How do you partition a 3-digit number into hundreds, tens and ones?
- How else can you partition a 3-digit number?
- What is the best way to partition the number to help you work out the division?
- If you cannot share all of the hundreds/tens equally, what do you need to do?
- How can you represent the division using a part-whole model?

Stem Sentences:

hundreds divided by ___ = \qquad hundredstens divided by \qquad $=$$\qquad$ ones.

- There is \qquad left over, so I need to exchange it for \qquad __.

Use 12 counters and the place value chart to make the numbers described. Use all 12 counters to make each number.

- 8

a 3-digit number divisible by 2
a 3-digit number divisible by 3
a 3-digit number divisible by 4
a 3-digit number divisible by 5

YEAR 4

Key

Vocabulary:

division
2-digit
3-digit
place value calculations exchanges part-whole model flexible partitioning multiples remainder
formal written method hundreds
tens
ones
equally
left over

Maths - Multiplication and Division B

Small Steps:

1. Factor pairs.
2. Use factor pairs.
3. Multiply by 10 .
4. Multiply by 100.
5. Divide by 10
6. Divide by 100 .
7. Related facts multiplication and division.
8. Informal written methods for multiplication.
9. Multiply a 2-digit number by a 1-digit number.
10. Multiply a 3-digit number by a 1-digit number.
11. Divide a 2-digit number by a 1-digit number (1).
12. Divide a 2-digit number by a 1-digit number (2).
13. Divide a 3-digit number by a 1-digit number.
14. Correspondence problems.
15. Efficient multiplication.

A cafe has 4 flavours of ice cream and 2 choices of toppings.

Ice cream flavours	Toppings
vanilla	
chocolate	sauce
strawberry	wafer
lemon	

- Complete the table to show the 8 possible combinations of flavours and toppings.

	Sauce	Wafer
Vanilla		WW
Chocolate		
Strawberry		SW
Lemon	LS	

Esther is choosing what to wear on a snowy day.

Hat	Scarf	Gloves

- How many different ways can Esther choose a hat and a scarf?
> How many different ways can Esther choose a hat and a pair of gloves?
- How many different ways can Esther choose a hat, a scarf and a pair of gloves?

How can you check your answers?

Key Questions:

- How can you use a table to help you find the possible combinations?
- How can you be sure that you have listed all the possibilities?
- How could you use a code to help you list the combinations?

Key

Vocabulary:

multiplication combinations
sets
times-tables
possibilities total table

- What do you notice about the number of choices for each item and the total number of combinations?
- How can you check your answer?
code
choices altogether
- Does the order in which you make your choices matter?

- List all the possible combinations of coins Huan could choose.
> How many different combinations of coins are there?
- List all the possible total amounts of money Huan can make.
> How many different total amounts of money are there?

Stem Sentences:

- For every \qquad , there are
- Altogether, there are \qquad x \qquad $=$ \qquad possible combinations.

Maths - Multiplication and Division B

Small Steps:

1. Factor pairs.
2. Use factor pairs.
3. Multiply by 10 .
4. Multiply by 100.
5. Divide by 10
6. Divide by 100 .
7. Related facts multiplication and division.
8. Informal written methods for multiplication.
9. Multiply a 2-digit number by a 1 -digit number.
10. Multiply a 3-digit number by a 1-digit number.
11. Divide a 2-digit number by a 1-digit number (1)
12. Divide a 2-digit number by a 1-digit number (2).
13. Divide a 3-digit number by a 1-digit number.
14. Correspondence problems.
15. Efficient multiplication.

Here are four different ways of working out 15×8 mentally. Complete the calculation in each method.

Method 1

$15 \times 8=10 \times 8+5 \times 8$
$=80+$ \qquad
$=$

Method 2
$15 \times 8=3 \times 5 \times 8$
$=3 \times$
\qquad
Method 3

$$
15 \times 8=15 \times 10-15 \times 2
$$

\qquad

Method 4

$15 \times 8=30 \times 8 \div 2$
\qquad

Key Questions:

- Which method do you find most efficient? Explain how this method works?
- What is the most efficient way to work out \qquad x \qquad ?
- What happens if you double one factor and halve the other?
- How could you use factor pairs to help you calculate?

Jack and Sam are working out 7×6

- Use Jack's method to work out 8×6
- Use Sam's method to work out 9×6

Stem Sentences:

- \qquad $-x$ \qquad $=$ \qquad
\qquad + \qquad x
- _ X \qquad $=$ \qquad X \qquad $-\quad{ }^{x}$ X__
- \quad - x \qquad $=$ \qquad X
X \qquad $\times 2$
\qquad \bullet X \qquad = \qquad X \qquad $\div 2$

YEAR 4

Key

Vocabulary:

multiplication efficient methods times-tables unknown facts strategies multiplying 2-digit 1-digit arrays
multiplicative structure associative law distributive law double
factor
halve factor pairs

Maths - Fractions

Small Steps:

1. Understand the whole
2. Count beyond 1 .
3. Partition a mixed number
4. Number lines with mixed numbers.
5. Compare and order mixed numbers.
6. Understand improper fractions.
7. Convert mixed numbers to improper fractions.
8. Convert improper fractions to mixed numbers.
9. Equivalent fractions on a number line.
10. Equivalent fraction families.
11. Add two or more fractions.
12. Add fractions and mixed numbers.
13. Subtract two fractions.
14. Subtract from whole amounts.
15. Subtract from mixed numbers.

Which shapes have been split into equal parts?

Complete the sentences for each shape.

The whole is divided into ___ equal parts. Each part is worth $\frac{1}{\square}$

What fraction of each diagram is shaded in each colour?


```
\begin{array} { | l | l | l | l | l | l | l | l | l | } { \hline Y } & { Y } & { Y } & { B } & { G } & { G } & { G } & { G } & { G } \\ { \hline } \end{array}
```

What fraction of each diagram represents the whole?

Shade the shapes to make one whole.

Complete the sentences for each diagram.
To make 1 whole, I shaded ___ equal parts.
The fraction I shaded was \qquad

Key Questions:

- Has the whole been divided into equal parts? How do you know?
- In this diagram, how many equal parts has the whole been divided into?
- How many equal parts has the whole been divided into for $1 / 5$?
- Is this a large or small part of the whole? How do you know?
- How many more parts are needed to make the whole? What fraction would this be?

Complete the additions.

Use the information in the table to draw each whole.

1 part	
\square	Number of parts in the whole
\square	5
\square	4
\square	3

Stem Sentences:

- The whole has been divided into \qquad equal parts.
- __ has been shaded.
- To make 1 whole, I need to shade \qquad equal parts.
- This is \qquad _.

Maths - Fractions

Small Steps:

1. Understand the whole
2. Count beyond 1 .
3. Partition a mixed number
4. Number lines with mixed numbers.
5. Compare and order mixed numbers.
6. Understand improper fractions.
7. Convert mixed numbers to improper fractions.
8. Convert improper fractions to mixed numbers.
9. Equivalent fractions on a number line.
10. Equivalent fraction families.
11. Add two or more fractions.
12. Add fractions and mixed numbers.
13. Subtract two fractions.
14. Subtract from whole amounts.
15. Subtract from mixed numbers.

Fill in the missing numbers.

$\frac{\square}{4}=1$

Complete the number line, counting in sixths.

Key Questions:

- What fraction comes next after $4 / 7,5 / 7,6 / 7$? How do you know?
- What fraction comes before \qquad ? How do you know?
- What do you know about a fraction with the same numerator and denominator?
- What is 1 whole plus another $1 / 3$? How could you draw that as a bar model?
- What is 3 and $5 / 5$ the same as?
- What is the sequence counting forwards/backwards in?

Complete the number tracks.

\qquad _s.

Stem Sentences:

- There are \qquad s in 1.
- The sequence is counting forwards/backwards in

\qquad

YEAR 4

Key

Vocabulary:

whole

greater than 1
one
forwards/backwards fractions within 1
number lines
bar models
unit fractions numerator
denominator
non-unit fractions
mixed numbers
equal equivalent add/plus same as next/before sequence counting

Maths - Fractions

Small Steps:

1. Understand the whole
2. Count beyond 1
3. Partition a mixed number.
4. Number lines with mixed numbers.
5. Compare and order mixed numbers.
6. Understand improper fractions.
7. Convert mixed numbers to improper fractions.
8. Convert improper fractions to mixed numbers.
9. Equivalent fractions on a number line.
10. Equivalent fraction families.
11. Add two or more fractions.
12. Add fractions and mixed numbers.
13. Subtract two fractions.
14. Subtract from whole amounts.
15. Subtract from mixed numbers.

What mixed number is shown in each diagram?

Key Questions:

- What is a mixed number?
- What does each part of a mixed number represent?
- How many wholes are there in the mixed number \qquad ?
- What is the fractional part of \qquad ?
- How can you partition the mixed number into wholes and a fraction?

YEAR 4

Key

Vocabulary:

mixed numbers partitioning whole fractional parts part-whole models bar models fraction

- How many other ways could you partition the mixed number?

Use the digit cards to complete the statements.

You can use each card once only.

[^1]Use the diagram to help you complete the part-whole model.

Stem Sentences:

- There are \qquad wholes.
- There are
- The mixed number is \qquad
\qquad wholes and can be partitioned into

- \qquad

Complete the part-whole models to show the wholes and fractions in the mixed numbers.
 - $\frac{\square}{\square}$

Maths - Fractions

Small Steps:

1. Understand the whole.
2. Count beyond 1 .
3. Partition a mixed number
4. Number lines with mixed numbers.
5. Compare and order mixed numbers.
6. Understand improper fractions.
7. Convert mixed numbers to improper fractions.
8. Convert improper fractions to mixed numbers.
9. Equivalent fractions on a number line.
10. Equivalent fraction families.
11. Add two or more fractions.
12. Add fractions and mixed numbers.
13. Subtract two fractions.
14. Subtract from whole amounts.
15. Subtract from mixed numbers.

Key Questions:

- On the number line, how many intervals are there between these two consecutive whole numbers, \qquad and \qquad ?
- What is each interval worth on the number line?
- Is it more efficient to count on from the previous whole number or back from the next whole number when labelling \qquad ?
- What is the whole number before and after \qquad ?
- Is \qquad closer to the previous or the next whole number? How do you know?
- How is comparing mixed numbers similar to comparing proper fractions? How is it different?
- Are the whole numbers the same? Which is the greater whole?
- If the whole numbers are the same? What do you need to compare? Which is the greater fraction? How do you know?
- How do you know the mixed numbers are in order?

Stem Sentences:

- The difference between the start and end of the number line is \qquad -
\qquad intervals.
- There are
\qquad .
- is closer to \qquad than \qquad _.
- First, I, \square compare the ___. If the are the same, I will compare the \qquad -
- If the denominator is the same, the \qquad the numerator, the

YEAR 4

Key

Vocabulary:

mixed numbers

 number line labelfractions
intervals worth whole divisions consecutive integers quarters estimate positions closer to halfway either side efficient previous/next before/after difference start/end compare/order denominators/numerator
same
greater

Maths - Fractions

Small Steps:

1. Understand the whole.
2. Count beyond 1.
3. Partition a mixed number.
4. Number lines with mixed numbers.
5. Compare and order mixed numbers.
6. Understand improper fractions.
7. Convert mixed numbers to improper fractions.
8. Convert improper fractions to mixed numbers.
9. Equivalent fractions on a number line.
10. Equivalent fraction families.
11. Add two or more fractions.
12. Add fractions and mixed numbers.
13. Subtract two fractions.
14. Subtract from whole amounts.
15. Subtract from mixed numbers.

Fill in the missing numbers.

What do you notice?

Fill in the missing numbers.

$\frac{\square}{2}=10$

Key Questions:

- How many \qquad (for example, thirds) are there in 1 whole?
- So how many \qquad (for example, thirds) will there be in 2/3/4 wholes?
- What do you think comes next in this count: 3 fifths, $4 f i f t h s, 5$ fiiths?
- What is the same and mixed numbers and improper fractions? What is different?
- If there are 10 tenths in 1 whole, how many tenths are there ins 1 whole and $1 / 10$?
- Which of these are improper fractions? How do you know?

Use the digit cards to make as many improper fractions as you can.

YEAR 4

Key

Vocabulary:

fractions

 greater than 1 mixed numbers improper fractions numerator greater than equal to denominator whole integers bar model number lines next same/different

> Which of the improper fractions are greater than 1 and less than 2 ? Which of the improper fractions are greater than 2 and less than 3 ?

Stem Sentences:

- An improper fraction is a fraction where the numerator is ___ the denominator.
- There are \qquad in 1 whole, so there are \qquad in $2 / 3 / 4$ wholes.

Maths - Fractions

Small Steps:

1. Understand the whole.
2. Count beyond 1 .
3. Partition a mixed number.
4. Number lines with mixed numbers.
5. Compare and order mixed numbers.
6. Understand improper fractions.
7. Convert mixed numbers to improper fractions.
8. Convert improper fractions to mixed numbers.
9. Equivalent fractions on a number line.
10. Equivalent fraction families.
11. Add two or more fractions.
12. Add fractions and mixed numbers.
13. Subtract two fractions.
14. Subtract from whole amounts.
15. Subtract from mixed numbers.

Key Questions:

- What is the integer in the mixed number \qquad ?
- What is the fractional part of the mixed number \qquad ?
- How do you know if a fraction is improper?
- How many fifths are there in 2/3/4 wholes? What do you notice?
- If there are 8 quarters in 2 , how many more quarters do you need to add for the mixed number $23 / 4$?
- What do you noticed about the improper fraction equivalences of $2 \frac{2}{9}, 2 \frac{3}{9}, 2 \frac{4}{9} / 2 \frac{2}{9}, 3 \frac{2}{9}, 4 \frac{2}{9}$?
- How ao you know \qquad is an improper fraction?
- How many quarters are there in $15 / 4$?
- How many quarters are there in $1 / 2 / 3$ wholes?
- How many groups of 4 are there in 15 ? What is the remainder?

YEAR 4

Key

Vocabulary:

mixed number

 improper fractions convertbar models number lines times-table equivalent integer adding
fractional parts worth altogether division
groups of remainder

- How can you write that as a mixed number?

Stem Sentences:

- Each whole is worth \qquad -.
- All the wholes are worth \qquad _.
- Adding the fractional part means that altogether there are
- There are \qquad
\qquad in 1 whole?
- There are \qquad groups of \qquad and \qquad remaining

- So \qquad as a mixed number is \qquad -.

Maths - Fractions

YEAR 4

Small Steps:

1. Understand the whole.
2. Count beyond 1 .
3. Partition a mixed number.
4. Number lines with mixed numbers.
5. Compare and order mixed numbers.
6. Understand improper fractions.
7. Convert mixed numbers to improper fractions.
8. Convert improper fractions to mixed numbers.
9. Equivalent fractions on a number line.
10. Equivalent fraction families.
11. Add two or more fractions.
12. Add fractions and mixed numbers.
13. Subtract two fractions.
14. Subtract from whole amounts.
15. Subtract from mixed numbers.

The number lines show two pairs of equivalent fractions.

Label the number lines.

Use the number lines to complete the equivalent fractions.

Key Questions:

- What are equivalent fractions?
- What unit fraction is the number like counting in?
- How do you know that \qquad is equivalent to \qquad ?
- Why do the integers have to be in line with each other?
- How do you know that 2 and $1 / 3$ cannot be equivalent to 4 and $2 / 6$?
- What is ___ as a mixed number/improper fraction?
- How can you split each section into $2 / 3 / 4$ equal smaller parts?
- How many other ways could you split each part?
- If you split each part into \qquad equal smaller parts, what fraction does each part now represent?
- Why do you need to split all of the existing parts? Why do they need to be equal in size?
- Are there any fractions on the fraction wall that do not have any equivalent fractions shown? Does this mean they do not have any equivalent fractions?

Stem Sentences:

- There are \qquad equal intervals between counting in
\qquad is equivalent to \qquad because...
- I know that - To split the number line into \qquad I need to split each interval into \qquad equal sections.
- If I divide each part into \qquad equal parts, then they will each represent
- I can divide each part into \qquad equal parts to show that \qquad is equivalto

Maths - Fractions

Small Steps:

1. Understand the whole.
2. Count beyond 1.
3. Partition a mixed number
4. Number lines with mixed numbers.
5. Compare and order mixed numbers.
6. Understand improper fractions.
7. Convert mixed numbers to improper fractions.
8. Convert improper fractions to mixed numbers.
9. Equivalent fractions on a number line.
10. Equivalent fraction families.
11. Add two or more fractions.
12. Add fractions and mixed numbers.
13. Subtract two fractions.
14. Subtract from whole amounts.
15. Subtract from mixed numbers.

Huan and Scott use bar models to represent $\frac{2}{5}+\frac{2}{5}=\frac{4}{5}$

Are their methods the same or different?
Complete the part-whole models.

Amir uses a number line to add fractions.

What calculation is Amir working out? What is the answer?

Tommy works out an addition.

$$
4 \frac{3}{5}+\frac{2}{5}=4 \frac{5}{5}
$$

Key Questions:

- Are the denominators the same? Why is this important?
- How can you show the addition in a diagram/bar model?
- How could a number line help you?
- If you answer greater or smaller than 1? How do you know?
- How do you convert an improper fraction to a mixed number?
- How is adding three fractions different from adding two fractions?
- How would you explain how to add fractions to someone who does not understand?
- Are the denominators the same? Why is this important?
- How is adding two fractions different from adding a fraction and a whole number? How is it different from adding a fraction and a mixed number?
- Do you prefer to use a bar model or a number line? Why?
- How could you partition the fraction to help you work out the answer?
- Do you have an improper fraction in your answer? How should you write the mixed number?

Stem Sentences:

- When the denominators are the same, to add the fractions add the \qquad -.
- $\frac{\square}{\square}$ is the same as ___ (for example, $5 / 4$ is the same as $11 / 4$).
- I can partition \qquad into \qquad and \qquad _.
\qquad -

YEAR 4

Key

Vocabulary:

add

fractions
denominator
same/different
proper fractions mixed numbers equal parts bar models counting on number line greater than 1 total
within 1
convert
greater/smaller difference/different crossing a whole partitioning whole number

Do you agree with Tommy?
Explain your answer.

Maths - Fractions

YEAR 4

Small Steps:

1. Understand the whole.
2. Count beyond 1.
3. Partition a mixed number.
4. Number lines with mixed numbers.
5. Compare and order mixed numbers.
6. Understand improper fractions.
7. Convert mixed numbers to improper fractions.
8. Convert improper fractions to mixed numbers.
9. Equivalent fractions on a number line.
10. Equivalent fraction families.
11. Add two or more fractions.
12. Add fractions and mixed numbers.
13. Subtract two fractions.
14. Subtract from whole amounts.
15. Subtract from mixed numbers.

Key Questions:

- Are the denominators the same? Why is this important?
- How could you represent the subtraction in a diagram/bar model?
- How would a number line help you?
- If your answer greater or smaller than 1? How do you know?
- What is the same when you adding or subtracting fractions with the same denominator? What is different?
- How would you explain how to subtract fractions to someone who does not understand?
- How many \qquad are equal to 1 whole/ 2 wholes $/ 5$ wholes?
- What is the connection between the numerator in the question and the numerator in the answer when you subtract a fraction from 1?
- How can you show the problem using a bar model/number line?
- How many of the wholes are affected when you subtract a fraction?
How can you partition the whole number to help with subtracting?

Stem Sentences:

- If the denominators are the same, to subtract the fractions I need to subtract the

Key

Vocabulary:

subtract

fractions same/different denominator numerators bar models taking away partitioning difference proper/improper whole numbers mixed numbers greater/smaller minus equal to equal parts equivalent

- ___ minus \qquad is equal to \qquad .
- $1-\frac{\square}{\square}=\frac{\square}{\square}$, so $2-\frac{\square}{\square}-1 \frac{\square}{\square}$
- 1 whole is equal to $\frac{\square}{\square}$, so the wholes are equal to $\frac{\square}{\square}$ \square

Maths - Fractions

YEAR 4

Small Steps:

1. Understand the whole.
2. Count beyond 1 .
3. Partition a mixed number.
4. Number lines with mixed numbers.
5. Compare and order mixed numbers.
6. Understand improper fractions.
7. Convert mixed numbers to improper fractions.
8. Convert improper fractions to mixed numbers.
9. Equivalent fractions on a number line.
10. Equivalent fraction families.
11. Add two or more fractions.
12. Add fractions and mixed numbers.
13. Subtract two fractions.
14. Subtract from whole amounts.
15. Subtract from mixed numbers.

Key Questions:

Aisha uses a bar model to show that $2 \frac{2}{3}-1=1 \frac{2}{3}$ What do you notice?

Ron uses a bar model to show that $2 \frac{2}{3}-\frac{1}{3}=2 \frac{1}{3}$

Esther and Brett are working out $2 \frac{2}{5}-\frac{4}{5}=1 \frac{3}{5}$

What is the same about the methods? What is different?
Jack has partitioned $\frac{5}{6}$ to work out $2 \frac{4}{6}-\frac{5}{6}$

\qquad -
I can partition \qquad into \qquad and \qquad

Key

Vocabulary:

subtract

mixed numbers whole
bar models
number lines cross a whole fractions same/different partition calculation previous denominators

A piece of ribbon is $3 \frac{1}{4} \mathrm{~m}$ long.
Tom and Alex cut off $\frac{3}{4} \mathrm{~m}$ of
ribbon each.
Nijah needs 2 m of ribbon to complete an art project.
Is there enough ribbon left for Nijah? Explain your answer.

Stem Sentences:

If the denominators are the same, to subtract the fractions I need to subtract the —.
When I subtract a whole number from a mixed number, the \qquad stays the same.

Maths - Decimals

YEAR 4

Key

Small Steps:

1. Tenths as fractions.
2. Tenths as decimals.
3. Tenths on a place value chart.
4. Tenths on a number line.

What fraction does each picture show?

Scott is counting up in tenths.

Continue Scott's counting until you reach 1

Complete the number line counting in tenths.

Key Questions:

- What is a fraction/decimal?
- What is a tenth?
- If a whole is divided into 10 equal parts, what is the value of each part?
- How can you represent the fraction/decimal \qquad using a model?
- When you are counting up in tenths, what comes before/after \qquad ?
- When you are counting up in tenths, what comes after 9/10?
- How are tenths similar to ones?
- How are decimals similar to fractions?
- How can you convert between tenths as fractions and tenths as decimals?
- How is $1 / 10$ similar to 0.1 ? How is it different?

Vocabulary:

unit fractions

 non-unit fractions compare/order dividing hundredequal parts number line tenths fraction whole tenths column
place value same/different

Stem Sentences:

- When a whole is split into \qquad equal parts, one of those parts is worth
- When counting in tenths, the number before/after \qquad is \qquad _.
- If a whole is split into 10 equal parts, then each part is worth \qquad .
- Zero point \qquad is equal to \qquad tenths.
- ___ as a fraction/decimal is ____.

Maths - Decimals

Small Steps:

1. Tenths as fractions
2. Tenths as decimals
3. Tenths on a place value chart.
4. Tenths on a number line.
5. Divide a 1-digit number by 10.
6. Divide a 2-digit number by 10 .
7. Hundredths as fractions.
8. Hundredths as decimals.
9. Hundredths on a place value chart.
10. Divide a 1 - or 2 digit number by 100.

Teddy uses place value counters and a place value chart to represent the number 1.3

Ones	Tenths
(1)	There is 1 whole and 3 tenths. The number is 1.3

Mo is counting up in tenths.
When he gets to 10 tenths, he exchanges them to make 1 one.

Complete the number tracks.

Dani is counting in tenths on a number line.

Finish labelling Dani's number line.

What number is the arrow pointing to?

Key Questions:

- What is a tenth?
- What is a decimal point?
- If you have \qquad in the tenths column, what number do you have?
- How many tenths make 1 whole?
- If you have 10 in the tenths column, can you make an exchange?
- How many wholes/tenths are in the number \qquad ?
- How can you show these numbers on a number line?
- If there are 10 intervals between two whole numbers, what is each interval worth?
- How can you work out he missing number in the sequence?
- What intervals does the number line go up in?
- How do you count in 0.1 s past a whole number?

Stem Sentences:

- There are \qquad tenths in 1 whole.
- 1 whole is equivalent to ___ tenths.
- There is/are \qquad whole/wholes and \qquad tenths.
- The number is \qquad __.
- The start point is \qquad —.
- The end point is \qquad -.
- The number line is counting up in \qquad .
- The missing number is \qquad because...

YEAR 4

Key

Vocabulary:

tenths column
place value greater than 1 equivalent whole
forwards/backwards decimal point exchange number line
decimal numbers sequence
value
intervals
crossing the whole greater than 1 mixed numbers worth start/end -

Maths - Decimals

Small Steps:

1. Tenths as fractions.
2. Tenths as decimals.
3. Tenths on a place value chart.
4. Tenths on a number line.
5. Divide a 1-digit number by 10.
6. Divide a 2-digit number by 10
7. Hundredths as fractions.
8. Hundredths as decimals.
9. Hundredths on a place value chart.
10. Divide a 1 - or $2-$ digit number by 100.

Key Questions:

- What number is represented on the place value chart?
- When divided a number by 10 , how many equal parts is the number split into?
- How many tenths are there in 1 whole/ 2 wholes/3 wholes?
- How can you use counters and a place value chart to show divided a number by 10 ?
- What is the same and what is different before and after a 1 digit number is divided by 10 ?
- How can you show this 2-digit number on a place value chart/in a part-whole model?
- When divided a number by 10 , how many equal parts are you splitting it into?
- How can you use a part-whole model to help you divide a 2 digit number by 10 ?
- What could a 2 digit number look like once it has been divided by 10 ?
- What happens to a number when you divide it by 10 ?

YEAR 4

Key

Vocabulary:

divide/dividing 1-digit ten
decimal number 1 decimal place equal parts shared
exchanging
place value worth move one place right tenths same/different 10 times the size one-tenth the size

2-digit direction
splitting

Jack uses a Gattegno chart to work out that $23 \div 10=2.3$

10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

Maths - Decimals

Small Steps:

1. Tenths as fractions.
2. Tenths as decimals.
3. Tenths on a place value chart
4. Tenths on a number line.
5. Divide a 1-digit number by 10.
6. Divide a 2-digit number by 10 .
7. Hundredths as fractions.
8. Hundredths as decimals.
9. Hundredths on a place value chart
10. Divide a 1- or 2-digit number by 100.

Each part of a hundred square is worth $\frac{1}{100}$
What fraction of each hundred square is shaded?

This Rekenrek is made up of 100 beads.

If the Rekenrek represents 1 whole, what fraction is shown on the left?
What fraction is shown on the right?

Annie makes 0.23 using place value counters.
(1)(3):3)

What numbers do these counters represent?

" (1) (1) (10) (10) $\frac{1}{100} \frac{1}{100} \frac{1}{100} \frac{1}{100}$
Give your answers as decimals.

Key Questions:

- How many hundredths are there in 1 whole?
- How is a hundredth similar to/different from a tenth?
- How can you represent hundredths in a hundred square?
- How many hundredths are equivalent to 1 tenth?
- How can you use base 10 to represent both tents and hundredths?
- How can you partition \qquad into tenths and hundredths?
- How is a decimal similar to/different from a fraction?
- how can you write 1 hundredth as a decimal number?
- Are $1 / 100$ and 0.01 the same or different?
- Is \qquad greater or smaller than \qquad ?
- How many hundredths are equivalent to 1 tenth?

Picture	Words	Fraction	Decimal
	fifty-six hundiredths		
		$\frac{17}{100}$	

YEAR 4

Key

Vocabulary:

tenths

 hundredths whole equal parts number lines place value partition similar/same different hundred square equivalent base 10 decimal number flexible partitioning fractions greater/smaller- There are \qquad
- There are ___ hundredths in

Stem Sentences:

\qquad tenths.
\qquad hundredths is equivalent to \qquad tenths and \qquad hundredths.

- There are \qquad hundredths in 1 tenth.
- ___ hundredths can be partitioned into \qquad tenths and \qquad hundredths.

Maths - Decimals

Small Steps:

1. Tenths as fractions.
2. Tenths as decimals.
3. Tenths on a place value chart.
4. Tenths on a number line.
5. Divide a 1-digit number by 10.
6. Divide a 2-digit number by 10 .
7. Hundredths as fractions.
8. Hundredths as decimals.
9. Hundredths on a place value chart.
10. Divide a 1 - or 2-digit number by 100.

Write the decimal numbers shown in the place value charts.
How many ones, tenths and hundredths are there in each number?

Brett uses place value counters to partition 0.23

Use Brett's method to help you partition the numbers in three different ways.

Use a place value chart and counters to make the numbers.

Complete the sentences to describe each number.
There are \qquad ones.

There are ___ hundredths
The number represented is

Key Questions:

- What is a hundredth?
- How many hundredths are equivalent to 1 tenth?
- How many hundredths are equivalent to 1 whole?
- Is \qquad greater/smaller than \qquad ?
- How can you represent this decimal number on a place value chart?
- How is the hundredths column on a place value chart similar to/different from the \qquad column?

Write $<,>$ or $=$ to complete the statements.

Is the statement always true, sometimes true or never true?

YEAR 4

Key

Vocabulary:

hundredths decimals column
place value tenth exchanging counters
greater/less than/smaller
flexibly partition zero placeholder equivalent
similar to/different
equal to
ones

A number with 5 in the
hundredths column is smaller
than a number with
6 in the tenths column.

Explain your answer

Stem Sentences:

\qquad is equal to \qquad ones, \qquad tenths and \qquad hundredths.

Maths - Decimals

Small Steps:

1. Tenths as fractions.
2. Tenths as decimals.
3. Tenths on a place value chart.
4. Tenths on a number line.
5. Divide a 1-digit number by 10.
6. Divide a 2-digit number by 10 .
7. Hundredths as fractions.
8. Hundredths as decimals.
9. Hundredths on a place value chart.
10. Divide a 1- or 2-digit number by 100.

Is the statement true or false?
When you divide any whole 2-digit number by 100 . there will be a zero in the ones column.

Rosie uses a place value chart to divide 21 by 100
She divides it first by 10 , and then by 10 again.

Key Questions:

- What exchanges can you make?
- How can you use a place value chart to show dividing a number by 100?
- How is dividing by 100 similar to/different from dividing by 10?
- What happens to a number when you divide it by 100 ?
- Does the decimal point ever move?
- If you divide by 10 twice, what do you notice?

Write $<,>$ or $=$ to complete the statements.

$\div 10=0.24$

- To divide something by

Tiny is working out $45 \div 100$

Do you agree with Tiny? Explain your answer.

Stem Sentences:

\qquad , split into \qquad equal parts.

- When dividing a number by 100 , move all the digits \qquad places to the \qquad _.

[^2]YEAR 4

Key

Vocabulary:

multiplication division 1-digit 2-digit hundred place value counters exchanges dividing moves two places right similar to/different from decimal point twice split equal parts

Maths - Measurement - Area

YEAR 4 Term 2

Small Steps:

1. What is area?
2. Count squares.
3. Make shapes.
4. Compare areas.

- For each pair of shapes, tick the shape with the greater area.

- Count the squares to find the area of each shape.

- What is the area of each shape?

There are 3 rows altogether: There are 5 squares in a row.
3 rows of 5 squares $=15$ squares
The area of the shape is 15 squares.

Key Questions:

- How can you measure area?
- Which item has the greatest/smallest area?
- Why would you not use sticky notes to find the area of the playground? What could you use instead?
- Why are sticky notes not useful for finding the area of a circle?
- What do you think the area of ___ might be?
- What happens if you use a different unit of measure to find the area?
- What can you do to make sure you do not count a square twice?
- How can you make sure you do not miss a square?
- Does your knowledge of times-tables help you to find the area?
- Can you use arrays to find the area of any shape?
- Which method is easitern/Wéntences:
: What can you do if is the squares are not futit squares?
- Area is the amount of ___ taken up by a 2-D shape or surface.
- Area can be measured using \qquad .
- There are \qquad squares inside the shape. This means that the area of the shape is \qquad squares.
- There are \qquad squares and \qquad half squares inside the shape.

Key
 Vocabulary:

area space amount 2-D
two-dimensional shape surface
counting squares formal calculation half squares accuracy complex shapes arrays properties squares rectangles measure greatest smallest circle This means that the area of the shape is ___ squares. times-table

- There are \qquad rows. Each row has \qquad squares. There are ___ squares in total.

Maths - Measurement - Area

YEAR 4

Is there more than one possible answer?

Small Steps:

1. What is area?
2. Count squares.
3. Make shapes.
4. Compare areas.

Add 7 more squares to the shape to make a rectangle

Is the statement true or false?

There is only one possible way to make a rectangle with an area of 12 squares.

- Which shape has the smaller area?

Draw two shapes to complete the comparison.

Key Questions:

- How many different shapes can you make with four squares?
- How can you work systematically?
- Should you overlap the squares when making your shapes?
- How many of these shapes are rectilinear? Explain why?
- Is it possible to make a rectangle with an odd number of squares?
- Is it possible to make a square with an odd number of squares?
- How can you find out which shape has the greater area?
- How much greater/smaller is the area of the first/second shape?
- What is different about the numbers of squares covered by the two shapes?
- What is the difference sareanetceen the shapes?
- How can you orten sentences.
- There are ou squares inside the shape
- This means that the area of the shape is \qquad squares.
- The area of the shape is \qquad squares.
- I can make the shape different by \qquad .
- The area of shape A is \qquad squares and the area of shape B is \qquad squares.
- I know shape \qquad has a greater area because it has
\qquad more squares than shape \qquad .
- The more squares inside a shape, the \qquad the area.

Key

Vocabulary:
area
rectilinear
shapes
squares straight sides right angles corners rectangles overlap odd compare marking noting accuracy complex shapes symbols inequality size order efficient method greater smaller difference

Maths - Length and Perimeter

Small Steps:

1. Measure in kilometres and metres.
2. Equivalent lengths (kilometres and metres).
3. Perimeter on a grid
4. Perimeter of a rectangle.
5. Perimeter of rectilinear shapes.
6. Find missing lengths in rectilinear shapes.
7. Calculate perimeter of rectilinear shapes.
8. Perimeter of regular polygons.
9. Perimeter of polygons.

Write $<,>$ or $=$ to compare the lengths.

Sort the cards into the table to show the appropriate unit

Complete the models

$3 \mathrm{~km} \mathrm{300m}$		
km	300 m	
m	$1 \mathrm{~km} \mathrm{280m}$	

Use the double number line to complete the number sentences.

- $1,000 \mathrm{~m}=\ldots \quad \mathrm{km}$
> $\quad \mathrm{m}=4 \mathrm{~km}$
- $3,000 \mathrm{~m}=\ldots \quad \mathrm{km}$

Key Questions:

- What unit of measurement would you use to measure the length of a \qquad ? Why?
- What unit of measurement would you use to measure \qquad ? Why?
- Which is the greater length, 1 km or 1 m ?
- Which is greater, \qquad km and \qquad m or \qquad km and \qquad m ? How do you know?
- Which is greater, \qquad km or \qquad m? how do you know?
- How many kilometres and metres are there in \qquad km \qquad m?
- How many metres are there in 1 km ? So how many metres are there in \qquad km?
- How can you work out how many metres is equivalent to half a kilometre? What other fractions of a kilometre can you convert to metres?
- What is the same and what is different about converting metres to centimetres and converting kilometres to metres?

Stem Sentences:

- ___ $\mathrm{km} \ldots \quad \mathrm{m}=$ \qquad km + \qquad m
- ___km and m is greater than \qquad _km and \qquad m.
\qquad km and \qquad m is less than \qquad km and \qquad m.
- There are \qquad m m in 1 km , so there are \qquad m in \qquad km.
- Each kilometre is \qquad m, so \qquad km is the same as \qquad m.
- Every $1,000 \mathrm{~m}$ is \qquad km, so \qquad m \qquad m.
- \quad km and \qquad m is the same as

YEAR 4

Key

Vocabulary:

measure
kilometres (km) lengths metres centimetres greater distances partition measurements addition bar model part-whole model units
less than convert equal thousand related facts ten thousand place value double number lines multiply divide ten hundred equivalent
\qquad

Maths - Length and Perimeter

Small Steps:

1. Measure in kilometres and metres.
2. Equivalent lengths (kilometres and metres).
3. Perimeter on a grid.
4. Perimeter of a rectangle.
5. Perimeter of rectilinear shapes.
6. Find missing lengths in rectilinear shapes.
7. Calculate perimeter of rectilinear shapes.
8. Perimeter of regular polygons.
9. Perimeter of polygons.

Work out the perimeters of the shapes.

Two recilinear shapes are drawn on centimere squared paper.

- Are the perimeters of the shapes the same or different? How do you know?
- Draw a shape with a perimeter that is greater than each of the shapes.

Key Questions:

- What does "perimeter" mean?
- What is the length of each square? How do you know?
- What is the length of each side? How do you know?
- What unit is used for the perimeter of your shape?
- How can you make sure you do not include one side twice?
- Which shape has the greater/greatest perimeter? How do you know?
- Can two different shapes have the same perimeter? How do you know? Can you draw an example to support your answer?
- How can you use the length of each side to calculate the perimeter?
- If you know the length and width of a rectangle, do you need to measure/label every side?

YEAR 4

Key

Vocabulary:

perimeter measuring calculating lengths rectilinear shapes right angles label add compare greater/greatest cm width rectangles

- How did you work out the perimeter of the rectangle? How double could you have done it a different way?
- How many different ways can you find the perimeter of this rectangle?

Stem Sentences:

- Perimeter $=$ \qquad cm + \qquad cm \qquad cm + \qquad $\mathrm{cm}=$ \qquad cm.
- The width is \qquad cm and the length is \qquad cm.
- The perimeter of the shape is \qquad cm because....
- 2 x \qquad $\mathrm{cm}+2 \mathrm{x}$ \qquad $\mathrm{cm}=$ \qquad cm.
- $2 x$ \qquad $\mathrm{cm}+$ \qquad $\mathrm{cm})=$ \qquad cm

Maths - Length and Perimeter

Small Steps:

1. Measure in kilometres and metres.
2. Equivalent lengths (kilometres and metres)
3. Perimeter on a grid
4. Perimeter of a rectangle.
5. Perimeter of rectilinear shapes.
6. Find missing lengths in rectilinear shapes.
7. Calculate perimeter of rectilinear shapes.
8. Perimeter of regular polygons.
9. Perimeter of polygons.

Annie has made some shapes using lolly sticks.

How many lolly sticks have been used to make each shape?

Find the missing lengths on the shapes.

$3 \mathrm{~cm}+3 \mathrm{~cm}=\ldots \mathrm{cm}$

$7 \mathrm{~cm}+2 \mathrm{~cm}=\ldots \mathrm{cm}$
$8 \mathrm{~cm}+4 \mathrm{~cm}=$ cm

Key Questions:

- What is a rectilinear shape?
- How many sides does the shape have?
- Are any of the sides equal in length?
- What strategies can you use to find the perimeter?
- How can you be sure you have included all the sides?
- How can you check your answer?
- How many rectilinear shapes can you draw with a perimeter of
\qquad cm ?
- What lengths do you know? What lengths do you need to find out?
- What is the total horizontal/vertical length of the shape?
- Which sides add together to give the same total?
- Do you need to add or subtract to find the missing length? How do you know?
- Are you finding a part or a whole?
- What is the missing length on the shape?
- How many missing lengths are there on the shape?

Stem Sentences:

- The calculation I need to do to work out the perimeter is...

YEAR 4

Key

Vocabulary:

perimeter
rectilinear shapes straight lines right angles
measure
duplication
omission
lengths width
equal
addition
subtraction
operations
part-whole model opposite
horizontal/vertical calculating equivalent

- The shapes has \qquad sides, so I need to add together \qquad lengths to find the perimeter.
- The perimeter of the shape is \qquad $\mathrm{mm} / \mathrm{cm} / \mathrm{m}$.
- \qquad $+$ \qquad = \qquad
- The missing side length is \qquad because...
- The side measuring \qquad and the side measuring \qquad are equal to the side measuring \qquad _-
- To workout the unknown length, I need to \qquad because...
- There are \qquad sides, so I need to add together \qquad lengths to find the perimeter.

Maths - Length and Perimeter

Small Steps:

1. Measure in kilometres and metres.
2. Equivalent lengths (kilometres and metres).
3. Perimeter on a grid
4. Perimeter of a rectangle.
5. Perimeter of rectilinear shapes.
6. Find missing lengths in rectilinear shapes.
7. Calculate perimeter of rectilinear shapes.
8. Perimeter of regular polygons.
9. Perimeter of polygons.

A polygon is regular if all its sides are equal in length and all its angles are equal in size.
Which of these polygons are regular?

Work out the perimeters of the regular polygons.

> All the shapes have one line of symmetry.

Work out the perimeters of the shapes.

The perimeter of a rectangle is 22 cm . The length of the rectangle is 8 cm . Work out the width of the rectangle.
The perimeter of this triangle is 19 cm . Work out the unknown length.

Key Questions:

- What is a polygon?
- How do you know if a polygon is regular?
- If one side is \qquad cm , what is the length of each of the sides of the shape? How can you find the perimeter?
- Is an equilateral triangle a regular shape?
- Is a rectangle a regular shape?
- If you know the perimeter of a regular polygon, how can you work out the length of each side?
- What is the difference between a regular and an irregular polygon?
- Is the shape irregular? How do you know?
- How can you work out the perimeter of the shape?
- Are any of the sides the same length?
- What is the length of each side?
- How can you work out the perimeter more efficiently?
- If the shape is symmetrical, how can this help you to work out some of the missing side lengths?

Stem Sentences:

- Each side is \qquad cm.
- There are \qquad sides, so the perimeter of the polygon is \qquad X \qquad $\mathrm{cm}=$ \qquad cm .
- $\quad \mathrm{cm}$ \qquad cm + \qquad $\mathrm{cm}=3 \mathrm{x}$ \qquad $\mathrm{cm}=$ \qquad cm .
- The shape is regular/irregular because...
- There are \qquad sides, so I need to add together \qquad lengths to work out the perimeter
- The c alculation I need to do to work out the perimeter is...

YEAR 4

Key

Vocabulary:

regular polygon equal
length
angles
size
repeated addition multiplication facts division perimeter straight equilateral triangle irregular difference symmetrical

[^0]: What is the same about their methods?
 What is different about their methods?

 - What is different about their methods?
 - Whose method is more efficient?

[^1]: Find all the possible solutions.

[^2]: What patterns can Ron see?

