

YEAR 4 Term [^]

Key Vocabulary:

Small Steps:

- Represent numbers to 1,000. 1.
- 2. Partition numbers to 1,000.
- 3. Number line to 1,000.
- Thousands. 4.
- 5. Represent numbers to 10,000.
- Partition numbers to 10,000. 6.
- Flexible partitioning of 7. numbers to 10.000.
- Find 1, 10, 100, 1000 more 8. or less.
- 9. Number line to 10,000.
- 10. Estimate on a number line to 10,000.
- 11. Compare numbers to 10,000
- 12. Order numbers to 10,000.
- 13. Roman numerals.
- 14. Round to the nearest 10.
- 15. Round to the nearest 100.
- 16. Round to the nearest 1,000.
- 17. Round to the nearest 10, 100

500

563

or 1,000.

347 =

0 500 800

219

- Why are Sternar Senten celses of a number line imperteens? There are When a number has no _____, then we use _____ as a placeholder.
 - has hundreds, <u>tens and</u> ones.

counter?

line?

points?

.

How did you count the pieces?

= + +

1.000

The number that is made up of _____ hundreds, _____ tens and _____ ones is

Key Questions:

Does the order in which you build the number matter?

How do you write a number that has zero tens/ones?

What is the value of the digit _____ in the number _____?

How many intervals are there? What are they worth?

How can you work out the halfway point of an interval?

What other numbers can you mark on the number line?

Can you represent the number another way?

What number is equal to 300 + 70 + 9?

How many hundreds/tens/ones are there in 465?

What is the value of each base 10 piece/place value

- The difference in value between the start and end of the number line is
- represent thousand ones tens hundreds zero placeholder base 10 place value What is the value of the missing part? How do you know? 2-digit 3-digit What are the values at the start/end points of the number 4-digit partition part-whole model What is the difference in value between the start and end parts wholes expanded form number line label identify tens and ones. The number is ____ missing values difference start point

end point

midpoint dividing

interval

1,000

1,000

YEAR 4

Key Vocabulary:

Small Steps:

- Represent numbers to 1,00 1.
- 2. Partition numbers to 1,000
- Number line to 1,000. 3.
- Thousands. 4.
- Represent numbers to 10,000. 5.
- Partition numbers to 10,000. 6.
- Flexible partitioning of numbers 7. to 10,000.
- Find 1, 10, 100, 1000 more or 8. less.
- Number line to 10,000. 9.
- 10. Estimate on a number line to 10,000.
- 11. Compare numbers to 10,000.
- 12. Order numbers to 10,000.
- 13. Roman numerals.
- 14. Round to the nearest 10.
- 15. Round to the nearest 100.
- 16. Round to the nearest 1,000.
- 17. Round to the nearest 10, 100 or 1,000.

1,000

1,000

1,000

1,000

00000	80800 80800	ones =	tens
88888	88888	tens =	hundreds

hundreds = _____ thousands

1,000	2,000			
		7,000	8,000	9,000

Key Questions:

- Counting in 1,000s from 3,000, what is the next number?
- Counting back in 1,000's from 7,000, tell me a number you would say. How do you know?
- How many thousands are there in 6,000?
- How many hundreds are there in 1,000?
- How many hundreds are the in 6,000?

thousand forwards backwards multiple number track ones hundreds 4-digit equal to base 10 place value counters ten frame next previous numerals

What mistake has Tiny made?

Stem Sentences:

The next multiple of 1,000 is

four digits.

- The previous multiple of 1,000 is _____.
- 1 thousand is equal to _____ hundreds, so _____ thousands is equal to _ hundreds.
- thousands can be written in numerals as _____.

YEAR 4

Key Vocabulary:

thousand hundreds tens ones ten thousand place value Gattegno columns times the size a tenth the size zero placeholder 4-digit partition numerals expanded form value part-whole partitioning

omitted

flexible partitioning

whole number

parts

addition

subtraction

exchanges

4,000 5,000 6,000 7,000 8,000 9,000 model? 400 500 600 700 800 900 40 50 60 70 80 90 6 4 5 7 8 9

- **Key Questions:**
- What number is represented?/What is the value of each digit?
- Represent 4,672 using base 10/place value counters.
- How many thousands, hundreds, tens and ones are in the number
- How would you represent 6.000 + 0 + 60 + 9
- How do you know the counter in the thousands column has a greater value than the counter in the ones column?
- What is the value of each digit in 4,715?
- Does the order in which you partition the number matter?
- What number is equal to 7,000 + 0 + 30 + 4?
- What does a zero in a place value column tell you?
- How can you write the number using a part-whole
- What different multiples of 1,000 could be the first part?
- How does this affect the values of the other parts?
- What can you exchange the thousands/hundreds/tens/ones digit for?
- How do yStemkSentervces: given the parts?
- thousands, There are hundreds, tens and ____ ones. The number is thousands, hundreds, tens and ones. has
- = + + +
- is equal to _____ thousands, ____ hundreds, ____ tens and ones thousands, hundreds. tens and or ones.

Small Steps:

1,000

100

10

1

2,000

200

20

2

3,000

300

30

3

- Represent numbers to 1,000. 1.
- 2. Partition numbers to 1.000.
- Number line to 1,000. 3.
- Thousands. 4.
- Represent numbers to 10,000. 5.
- Partition numbers to 10.000. 6.
- 7. Flexible partitioning of numbers to 10,000.
- Find 1, 10, 100, 1000 more or 8. less.
- Number line to 10,000. 9.
- 10. Estimate on a number line to 10,000.
- 11. Compare numbers to 10,000.
- Order numbers to 10,000. 12.
- 13. Roman numerals.
- 14. Round to the nearest 10.
- 15. Round to the nearest 100.
- 16. Round to the nearest 1,000.
- 17. Round to the nearest 10, 100 or 1,000.

YEAR 4

<u>Key</u> Vocabulary:

more

less

Small Steps:

- 1. Represent numbers to 1,000.
- 2. Partition numbers to 1,000.
- 3. Number line to 1,000.
- 4. Thousands.
- 5. Represent numbers to 10,000.
- 6. Partition numbers to 10,000.
- 7. Flexible partitioning of numbers to 10,000.
- 8. Find 1, 10, 100, 1000 more or less.
- 9. Number line to 10,000.
- 10. Estimate on a number line to 10,000.
- 11. Compare numbers to 10,000.
- 12. Order numbers to 10,000.
- 13. Roman numerals.
- 14. Round to the nearest 10.
- 15. Round to the nearest 100.
- 16. Round to the nearest 1,000.
- 17. Round to the nearest 10, 100 or 1,000.

Comp	lete the	sentence	es.
	-		

1	less	than	the	number	is	

10 less than the number is _____

100 less than the number is _____

Complete the sentences

1,000 less than the number is

Thousands	Hundreds	Tens	Ones
000	00	00	00
0	1.2		00

The number is _____

1 more than the number is ______ 10 more than the number is ______

100 more than the number is _____

1,000 more than the number is _____

The place value chart shows that 100 more than 4,932 is 5,032

٠

Key Questions:

- How many ones/tens/hundreds/thousands are in _____?
- How will the number change if you add an extra 1/10/100/1,000?
- Which column changes if you find 1,000 more/less than a number?
- Can finding 1/10/100 more/less change more than one column? When does this happen?
- Do you need to make an exchange?
- How can you find 100 less than 8,012? What exchange do you need to make?
- Which columns stay the same/change?

The place value chart shows that 10 less than 3,402 is 3,392

3-digit 4-digit base 10 place value counters multiples zero placeholder columns change stay the same ones tens hundreds thousands always sometimes never

Stem Sentences:

- There are _____ tens/hundred/thousands in _____.
- 1 more/less than ____ tens in ____ tens.

____ more/less than _____ is ____.

<u>Maths – Place Value</u>

Small Steps:

- 1. Represent numbers to 1,000.
- 2. Partition numbers to 1,000.
- 3. Number line to 1,000.
- 4. Thousands.
- 5. Represent numbers to 10,000.
- 6. Partition numbers to 10,000.
- 7. Flexible partitioning of numbers to 10,000.
- 8. Find 1, 10, 100, 1000 more or less.
- 9. Number line to 10,000.
- 10. Estimate on a number line to 10,000.
- 11. Compare numbers to 10,000.
- 12. Order numbers to 10,000.
- 13. Roman numerals.
- 14. Round to the nearest 10.
- 15. Round to the nearest 100.
- 16. Round to the nearest 1,000.
- 17. Round to the nearest 10, 100 or 1,000.

What number does each midpoint represent?

Alex and Dexter are marking 8,000 on the number line.

Key Questions:

- What are the values at the start and end points of the number line?
- What is the difference in value between the start and end points?
- How many intervals are there?
- How can you work out what each interval is worth?
- How can you work out the halfway point of an interval?
- What other numbers can you mark on the number line?
- Why are the start and end values of a number line important?
- What is the midpoint of the number line?
- How does knowing the midpoint help you to place the number on the number line?
- What other numbers could you mark on accurately?
- Which division is the arrow closer to? Is the number greater than or less than this value?
- How would splitting the line into more intervals help?
- How accurate **Stem then cesh** ate is?
- The difference in value between the start and end of the number line is _____.
- There are _____ intervals. Each interval is worth _____.
- The midpoint of the number line is _____.
- _____ is closer to _____ than _____.

number line thousand ten thousand label identifv values difference between start point midpoint end point dividing interval worth halfway estimate estimating additional one-quarter three-quarter closer less than greater than accurately division

YEAR 4

Key

Vocabulary:

Small Steps:

- 1. Represent numbers to 1,000.
- 2. Partition numbers to 1,000.
- 3. Number line to 1,000.
- 4. Thousands.
- 5. Represent numbers to 10,000.
- 6. Partition numbers to 10,000.
- 7. Flexible partitioning of numbers to 10,000.
- 8. Find 1, 10, 100, 1000 more or less.
- 9. Number line to 10,000.
- 10. Estimate on a number line to 10,000.
- 11. Compare numbers to 10,000.
- 12. Order numbers to 10,000.
- 13. Roman numerals.
- 14. Round to the nearest 10.
- 15. Round to the nearest 100.

	 -	CULUER	 :		Contraction	 	-	-	 -	CULUE	 •	
												-

Write <, > or = to compare the numbers.

Write <, > or = to compare the numbers.

Key Questions:

- What is the value of the first digit in ____?
- What is the value of the _____ digit in _____?
- How many thousands/hundreds/tens/ones are there?
- Which column do you start comparing from?
- Which digit in each number has the greatest value?
- What is the value of these digits?
- When comparing two numbers, if the first digits are equal in value, what do you look at next?
- Which is the greater number? How do you know?
- What is the difference between ascending and descending order?
- What is different about comparing numbers with the same number of digits and comparing numbers with different numbers of digits?
- If the digits in the _____ column are the same, I need to look in the _____ column.
- is greater than ____ because…
- is less than ____ because...
- _____ is greater than _____, so _____ thousand is greater than _____ thousand.
- is less than ____, so ____ thousand is less than ____ thousand.

YEAR 4

<u>Key</u> Vocabulary:

comparing ten thousand areater than smaller than less than more than inequality symbols base 10 place value counters number lines same columns right digits order ascending descending value zero placeholders comparisons

Small Steps:

- 1. Represent numbers to 1,000.
- 2. Partition numbers to 1,000.
- 3. Number line to 1,000.
- 4. Thousands.
- 5. Represent numbers to 10,000.
- 6. Partition numbers to 10,000.
- 7. Flexible partitioning of numbers to 10,000.
- 8. Find 1, 10, 100, 1000 more or less.
- 9. Number line to 10,000.
- 10. Estimate on a number line to 10,000.
- 11. Compare numbers to 10,000.
- 12. Order numbers to 10,000.
- 13. Roman numerals.
- 14. Round to the nearest 10.
- 15. Round to the nearest 100.
- Complete the function machines.

Write each number in Roman numerals.

 20
 50
 60

 64
 78
 85

Four numbers are written in Roman numerals.

What are the numbers?

 Each diagram should show a number in numerals, words and Roman numerals.

Complete the diagrams.

twentu

seven

27

62

99

Choose the correct answer to each calculation.

▶ L+L	LL	×	С	V
► C – X	СХ	XC	v	L
► IX + XI	XX	XXII	IXXI	IXIX

Key Questions:

- What patterns can you see in the Roman number system?
- What rules do you use when converting numbers to Roman numerals?
- What letters are used in the Roman number system? What does each letter represent?
- How do you know what order to write the letters in when using Roman numerals?
- What is the same and what is different about representing the number twenty-nine in the Roman number system and our number system?

Write <, > or = to complete the statements.

roman numerals clock face similarities differences number system zero placeholders IV XL XC patterns rules converting letters represent order greater than less than

Stem Sentences:

- The letter _____ represents the number _____.
- I know _____ is greater than _____ because _____.

YEAR 4

Key

Vocabulary:

Small Steps:

- 1. Represent numbers to 1,000.
- 2. Partition numbers to 1,000.
- 3. Number line to 1,000.
- 4. Thousands.
- 5. Represent numbers to 10,000.
- 6. Partition numbers to 10,000.
- 7. Flexible partitioning of numbers to 10,000.
- 8. Find 1, 10, 100, 1000 more or less.
- 9. Number line to 10,000.
- 10. Estimate on a number line to 10,000.
- 11. Compare numbers to 10,000.
- 12. Order numbers to 10,000.
- 13. Roman numerals.
- 14. Round to the nearest 10.
- 15. Round to the nearest 100.
- 16. Round to the nearest 1,000.
- 17. Round to the nearest 10, 100 or 1,000.

371 372 373 374 375 376 377 378 379

378 is closer to _____ than _____

378 rounded to the nearest 10 is _____

375 rounded to the nearest 10 is _____

Round each number to the nearest 100

Each of the numbers round to 4,000 to the nearest 1,000

What could the missing digits be?

4, __28 __,842 4,2__8 __,482

- **Stem Sentences:** The two multiples of 10/100/1,000 the number lies between are _____ and ____.
- ____ is closer to ____ than ____

•

rounded to the nearest 10/100/1,000 is

YEAR 4

<u>Key</u> Vocabulary:

above

round to

Small Steps:

- 1. Represent numbers to 1,000.
- 2. Partition numbers to 1,000.
- 3. Number line to 1,000.
- 4. Thousands.
- 5. Represent numbers to 10,000.
- 6. Partition numbers to 10,000.
- 7. Flexible partitioning of numbers to 10,000.
- 8. Find 1, 10, 100, 1000 more or less.
- 9. Number line to 10,000.
- 10. Estimate on a number line to 10,000.
- 11. Compare numbers to 10,000.
- 12. Order numbers to 10,000.
- 13. Roman numerals.
- 14. Round to the nearest 10.
- 15. Round to the nearest 100.
- 16. Round to the nearest 1,000.
- 17. Round to the nearest 10, 100 or 1,000.

Draw an arrow to mark 376 on each number line.

Complete the sentences.

376 rounded to the nearest 10 is _____

376 rounded to the nearest 100 is _____

376 rounded to the nearest 1,000 is _____

Complete the table.

Number	7,126	4,996	2,006	499
Rounded to the nearest 10				
Rounded to the nearest 100				
Rounded to the nearest 1,000				

Key Questions:

- What is the multiple 10/100/1,000 after _____?
- What is the multiple of 10/100/1,000 before ______
- Which multiple of 10/100/1,000 is _____ closer to? How do you know?
- Which numbers rounded to the nearest 10/100/1,000 result in zero?
- Which place value column do you need to look at to decide which multiple to round to?
- What is the same and what is different about rounding to the nearest 10, 100 and 1,000?

do you need to look at round to? is different about 100 and 1,000? 5,683 rounded to the nearest 10 is 5,700 What mistake has Tiny made?

What is the correct answer?

Stem Sentences:

- The two multiples of 10/100/1,000 the number lies between are _____ and ____.
- ____ is closer to ____ than ____
- _____ rounded to the nearest 10/100/1,000 is

YEAR 4

<u>Key</u> Vocabulary:

nearest 10 nearest 100 nearest 1,000 columns same different rounding place value previous next multiple accuracy after before closer to zero

3.

4.

5.

6.

7.

exchange.

exchange.

exchange.

exchange.

1,364 + 3 = _____

1,364 + 30 = _____

1.364 + 300 = _____

1,364 + 6,000 = _____

Maths – Addition and Subtraction

YEAR 4 Term 1

Key Vocabulary:

Key Questions:

If you know 2 + 4 = 6, what else do you know? How will your partition ? Why? Will the value in the ones/tens/hundreds/thousands column increase or decrease? By how much? Which place value columns have changed/stayed the

What is the inverse of subtracting 300?

Stem Sentences:

- The next/previous multiple of 10/100/1000 is _____.
- I can partition into and because...
- The value of the _____ column will increase/decrease by

add/adding/addition subtract/subtracting subtraction ones tens hundreds 3-digit/4-digit mental strategy crossing a multiple multiples columns always sometimes never change exchange partition value increase decrease place value inverse next previous partition value

Th H T O

3 2 5 6

+ 2 5 3 2

Th H T O

3 3 5 6

5 7 9 1

+ 2 4 3 5

YEAR 4

Key Vocabulary:

2-digit 3-digit exchange 4-digit add/addition/adding subtract/subtraction subtracting digits

- ones tens
- hundreds
- thousands
- column equal to
- place value
- smallest value column
 - altogether

plus

formal written method

- Add and subtract 1s, 10s, 100s and 1,000s.
- 2. Add up two 4-digit numbers – no exchange.
- 3. Add two 4-digit numbers – one exchange.
- Add two 4-digit numbers 4. - more than one exchange.
- Subtract two 4-digit 5. numbers – no exchange.
- 6. Subtract two 4-digit numbers - one exchange.
- 7. Subtract two 4-digit numbers - more than one exchange.

S.

1,052

8

9

1

Key Questions:

- How can you represent the question using base 10?
- How can you put these numbers into a place value ٠ chart?
- Does it matter which columns you add together first?
- Do you have enough ones/tens/hundreds to make ٠ an exchange?
- What do you write in the tens column if there are ٠ no tens?
- How many thousands/hundreds/tens/ones are there altogether?
- What is more than ?
- When exchanging 10 hundreds, where do you out the thousand?
- How can you make an exchange in more than one more than column in the softened stendences:
- ones added to _____ ones is equal to _____ ones.
 - added to _____ is equal to _____.
- I have _____ ones/tens/hundreds, so I do/do not need to make an exchange.
- I can exchange 10 _____ for 1 _____. .
- plus _____ plus the 1 that I exchanged from the last column is equal to _____.

YEAR 4

<u>Key</u> Vocabulary:

formal written method subtract/subtraction subtracting 2-digit 3-digit 4-digit exchange smallest value column columns ones tens hundreds thousands place value less than equal to calculation fewer column subtraction

Small Steps:

- 1. Add and subtract 1s, 10s, 100s and 1,000s.
- 2. Add up two 4-digit numbers – no exchange.
- Add two 4-digit numbers

 one exchange.
- 4. Add two 4-digit numbers – more than one exchange.
- 5. Subtract two 4-digit numbers no exchange.
- 6. Subtract two 4-digit numbers one exchange.
- 7. Subtract two 4-digit numbers more than one exchange.

housands	Hundreds	Tens	Ones

Th H T O

3 4 5 4

2 2 3 0

- 1 2 2 4

5,674

		Th	н	т	0
Т		3	3A	11	6
	-	1	2	2	3
T		2	1	9	3

Find the missing numbers.

Key Questions:

- How can you show this question using place value counters?
- What is ____ less than ____?
- Does it matter which column you subtract first?
- Do you need to make an exchange?
- Do you have enough ones/tens/hundreds to subtract ____?
- How can you subtract two numbers if one of them has fewer digits than the other?
- If you cannot exchange from tens/hundreds, what do you need to do?
- Which column can you exchange from?

- _____ ones/tens/hundreds subtract _____ ones/tens/hundreds is equal to _____.
- I can/cannot subtract _____ ones/tens/hundreds from _____ ones/tens/hundreds, so I do/do not need to make an exchange.

YEAR 4

<u>Key</u> Vocabulary:

mental method written method subtraction calculation strategies jottings efficient constant difference adding addition add amount exchanges multiple number line represent

Small Steps:

- 1. Add and subtract 1s, 10s, 100s and 1,000s.
- 2. Add up two 4-digit numbers – no exchange.
- Add two 4-digit numbers

 one exchange.
- Add two 4-digit numbers
 more than one exchange.
- 5. Subtract two 4-digit numbers no exchange.
- 6. Subtract two 4-digit numbers one exchange.
- Subtract two 4-digit numbers – more than one exchange.
- 8. Efficient subtraction.
- 9. Estimate answers
- 10. Checking strategies.

Whose method do you prefer? Why? Which is the most efficient method?

Complete each subtraction What do you notice? What stays the same?

What changes?

Kim

on.	6 - 3 =	\$\$\$\$\$\$\$ \$\$\$\$ \$\$\$\$	
	5 - 2 =	\$\$\$\$\$ \$ \$ \$ ↔ →	
	4 - 1 =	\$\$\$\$\$ \$\$ ↓ ← →	

Key Questions:

- Which method do you find easiest? Why?
- Which method is most efficient?
- Can you work this out mentally?
- What does "difference" mean?
- What does the arrow represent? What do you notice about all the arrows?
- Why does adding/subtracting _____ to/from each number make the calculation easier?

- The jump to the next multiple of _____ is
- If I add/subtract _____ to/from both numbers, the difference will be the same.

1.

Maths – Addition and Subtraction

YEAR 4

Key Vocabulary:

estimating

estimate

rounding

rounded

nearest 10/100/1,000

number line

representation

Small Steps: Add and subtract 1s, 10s, 100s and 1,000s. 1,000 2. Add up two 4-digit numbers – no exchange.

- 3. Add two 4-digit numbers - one exchange.
- Add two 4-digit numbers 4. - more than one exchange.
- 5. Subtract two 4-digit numbers – no exchange.
- 6. Subtract two 4-digit numbers - one exchange.
- Subtract two 4-digit 7. numbers - more than one exchange.
- 8. Efficient subtraction.
- Estimate answers 9.
- Checking strategies.

1,880 rounded to the nearest thousand is .

3,341

3,341 rounded to the nearest thousand is _____

The children are estimating the answer to 4,502 - 1,414

Which children have rounded correctly?

What mistake has been made? Whose calculation was easiest?

Whose estimate was most accurate?

Key Questions:

- What multiple of 10/100/1,000 comes before and after ?
- Where would be on this number line?
- Which multiple is closer to? .
- Which calculation is easier/quicker to perform? Whv?
- Why do we use estimates?
- Is the estimate less than or greater than the actual answer? Why?
 - Write < or > to complete the statements.

near to calculated calculation greater than less than previous multiple before after closer to

- is closer to than .
- So ____ rounded to the nearest ____ is ____.
- The estimate will be than the actual answer because...

Small Steps:

- 1. Add and subtract 1s, 10s, 100s and 1,000s.
- 2. Add up two 4-digit numbers – no exchange.
- Add two 4-digit numbers

 one exchange.
- 4. Add two 4-digit numbers– more than one exchange.
- 5. Subtract two 4-digit numbers – no exchange.
- 6. Subtract two 4-digit numbers one exchange.
- 7. Subtract two 4-digit numbers more than one exchange.
- 8. Efficient subtraction.
- 9. Estimate answers
- 10. Checking strategies.

1,500 800 1,500 + 800 = 2,300 - 1,500 =

How could you check your answers?

Complete the bar model for 3,582 – 2,236 = 1,346

Use an inverse operation to check each calculation.

How many different inverse calculations can you do for each?

Τh	н	т	0	
4	5	1	9	
	7	2	3	
5	2	4	2	
1		1		

Key Questions:

- What are the parts? What is the whole?
- Given one fact, what other facts can you write?
- What does "inverse" mean?
- What is the inverse of add/subtract ____?
- Is addition/subtraction commutative?
- Which subtractions can be used to check the addition 1,574 + 3,432 = 5,006?

5,006 - 3,432 5,006 - 1,574 3,432 - 1,574 1,574 - 5,006

 Which additions can be used to check the subtraction 3,265 - 823 = 2,442?

3,265 + 823 823 + 2,442 3,265 + 2,442 2,442 + 823

inverse relationship addition add subtraction subtract operations commutative bar model part-whole model accuracy estimations alternative checking strategy parts whole

Stem Sentences:

- The inverse of _____ is _____.
- If _____ is a part and _____ is a part, then _____ is the whole.
- If _____ is the whole and _____ is a part, then _____ is the other part.
- To check I have added/subtracted _____ correctly, I need to

YEAR 4

<u>Key</u> Vocabulary:

Maths – Multiplication and Division A

	Small Steps:	 Complete the number track 	Key Questions:	Kov
1.	Multiples of 3.	Complete the number track.	What is the next multiple of 3?	
2.	Multiply and divide	3 6 12 18 21 24 33 36	 What is the multiple of 3 before? 	<u>Vocabulary:</u>
	by 6.		 How many 3s are there in? 	multiplying
3.	6 times-table and		 How do you find the digit sum of a number? 	3s
	division facts.	Tiny is counting in 3s.	 How can you tell if a number is a multiple of 3? 	times-table
4.	Multiply and divide		 Are the multiples of 3 odd or even? 	multiples
	by 9.			number tracks
5.	9 times-table and		Complete the statements	L'indred squares
	division facts.	What mistake has Tiny made?	complete the statements.	digit sum
6.	The 3, 6 and 9		> 3 lots of 3 =	next
	times-tables.	Her	e are some multiples of 3	before
7.	Multiply and divide	Colour the multiples of 2 in the hundred source	► 4 lots of 3 =	odd
	by 7.	Colour the multiples of 3 in the hundred square.	462 717 897 612 900 561	even
8.	7 times-table and	1 2 3 4 5 6 7 8 9 10		lots of
	division facts.	11 12 13 14 15 16 17 18 19 20 Find	the digit sum of each number.	
9.	11 times-table and	21 22 23 24 25 26 27 28 29 30 Who	at do you potice? $\land \land \land$	3
	division facts.	31 32 33 34 35 36 37 38 39 40		5
10.	12 times-table and	41 42 43 44 45 46 47 48 49 50	7 lots of 3 = lots of 3 and 5 lots of	3
	division facts.	51 52 53 54 55 56 57 58 59 60		
11.	Multiply by 1 and 0.	61 62 63 64 65 66 67 68 69 70		
12.	Divide a number by	71 72 73 74 75 76 77 78 79 80	Stom Sontoncos:	
	1 and itself.	81 82 83 84 85 86 87 88 89 90	<u>Jiem Jemences.</u>	
13.	Multiply three	91 92 93 94 95 96 97 98 99 100	• The next multiple of 3 is	
	numbers.			

٠

I know _____ is a multiple of 3 because...

What do you notice?

YEAR 4

Key **Vocabulary:**

Small Steps:

- 1. Multiples of 3.
- 2. Multiply and divide by 6.
- 3. 6 times-table and division facts.
- Multiply and divide 4. by 9.
- 5. 9 times-table and division facts.
- The 3, 6 and 9 6. times-tables.
- Multiply and divide 7. by 7.
- 8. 7 times-table and division facts.
- 9. 11 times-table and division facts.
- 10. 12 times-table and division facts.
- 11. Multiply by 1 and 0.
- 12. Divide a number by 1 and itself.
- 13. Multiply three numbers.

There are	boxes.
Each box con	tains eggs.
There are	eggs in total.
×	_=

Complete the bar models.

Complete the sentences.

Match the inverse operations.

$18 \div 6 = 3$ $72 \div 6 = 12$ $54 \div 6 = 9$

 $42 \div 6 = 7$

Key Questions:

- How many equal groups do you have?
- How many are there in each group?
- How many are there altogether?
- What does each number in the calculation represent?
- What does commutative mean?
- Is multiplication/division commutative?
- How can you use facts from the 3 times-table to work out facts from the 6 times-table?
- How can you use facts from the 3 times-table to work out facts in the 6 times-table?
- How can you use facts from the 5 times-table to work out facts in the 6 times-table?
- If you know a multiplication sentence, what division sentences can you find?
- What is the fact family for the calculation?

Stem Sentences:

- 6 lots of is .
- shared into 6 equal groups is _____.
- Multiplying by 6 is the same as multiplying by _____ twice.
 - x 6 = double x 3
- 6 multiplied by _____ is equal to _____.

x 6 = ____, so ____ ÷ 6 =

3s times-table 6s multiply multiplication fact families double 5's commutative values division divide inverse equal groups altogether calculation represent lots of shared

YEAR 4

<u>Key</u> Vocabulary:

Small Steps:

- 1. Multiples of 3.
- 2. Multiply and divide by 6.
- 3. 6 times-table and division facts.
- 4. Multiply and divide by 9.
- 5. 9 times-table and division facts.
- 6. The 3, 6 and 9 timestables.
- 7. Multiply and divide by 7.
- 8. 7 times-table and division facts.
- 9. 11 times-table and division facts.
- 10. 12 times-table and division facts.
- 11. Multiply by 1 and 0.
- 12. Divide a number by 1 and itself.
- 13. Multiply three numbers.

Complete the sentences to describe the oranges.

There are _____ rows of 4 oranges.
 There are _____ oranges in total.

_____× ____ = ____

_____÷ ____ = _____

The oranges are shared into 9 boxes.
 There are ______ oranges in each box.

0

Complete the number line to show counting in multiples of 9

Complete the bar models.

Key Questions:

- How many equal groups are there?
- How many are there in each group?
- How many are there altogether?
- How can you use the 10 times-table to work out the 9 times-table?
- What does each number in the calculation represent?
- What patterns can you see in the 9 times-table?
- How could you use the 10 times-table to work out the 9 times-table?
- If you know a multiplication sentence, what division sentences can you find?
- How can you tell if a number is a multiple of 9?
- How can you use the 3 times-table to work out facts in the 9 times-table?

Stem Sentences:

- 9 lots of _____ is equal to _____.
- _____ groups of _____ is equal to _____ groups of _____.
- _____x 10 = _____, so _____x 9 = _____ ____ = _____.
- _____x 9 = _____x 9 + _____x 9
- _____x 9 = _____ = _____
- _____ x 9 = ____, so _____ ÷ 9 = _____
- Multiplying by 9 is the same as multiplying by _____ and then multiplying by _____ again.

95 times-table patterns unknown number facts known facts subtracting subtract subtraction 10s tripling commutative division divide inverse multiplication multiply equal groups altogether calculation represent lots of equivalent multiple

digit sum

11 12

31 32

YEAR 4

<u>Key</u> Vocabulary:

Small Steps:

- 1. Multiples of 3.
- 2. Multiply and divide by 6.
- 3. 6 times-table and division facts.
- 4. Multiply and divide by 9.
- 5. 9 times-table and division facts.
- 6. The 3, 6 and 9 times-tables.
- 7. Multiply and divide by 7.
- 8. 7 times-table and division facts.
- 9. 11 times-table and division facts.
- 10. 12 times-table and division facts.
- 11. Multiply by 1 and 0.
- 12. Divide a number by 1 and itself.

3 3

9

3 3 3 3

9

13. Multiply three numbers.

ł	lere	is	a	hu	ndr	red	sq	uar

- Circle the multiples of 3 in one colour.
- Circle the multiples of 6 in another colour.
- Circle the multiples of 9 in a third colour.

What do you notice?

 41
 42
 43
 44
 45
 46
 47
 48
 49
 50

 51
 52
 53
 54
 55
 56
 57
 58
 59
 60

 61
 62
 63
 64
 65
 66
 67
 68
 69
 70

 71
 72
 73
 74
 75
 76
 77
 78
 79
 80

 91
 92
 93
 94
 95
 96
 97
 98
 99
 100

13 14 15 16 17 18 19 20

23 24 25 26 27 28 29 30

33 34 35 36 37 38 39 40

3 3

9

3

Here are three number tracks for the 3, 6 and 9 times-tables.

Complete the number tracks.

3 3

9

3

3 3

9

3 3

9

Key Questions:

- What links can you see between the 3 and 6 timestables?
- What links can you see between the 3 and 9 timestables?
- What other times-tables can you use to help find the multiplication facts?
- If you know one multiplication fact, what other multiplication facts do you know? What division facts do you know?

Ho Dora has made an array to show 9 × 5

3s 6s 9s times-tables arrays hundred squares number facts patterns links multiply multiplication facts divide division multiple double triple lots of

- Double _____ x 3 = _____ x 6
- Triple _____ x 3 = _____ x 9
- 3 lots of _____ and 6 lots of _____ = 9 lots of _____.
 - _____ x 3 x 3 = _____ x ____.

YEAR 4

<u>Key</u> Vocabulary:

Small Steps:

- 1. Multiples of 3.
- 2. Multiply and divide by 6.
- 3. 6 times-table and division facts.
- 4. Multiply and divide by 9.
- 5. 9 times-table and division facts.
- 6. The 3, 6 and 9 times-tables.
- 7. Multiply and divide by 7.
- 8. 7 times-table and division facts.
- 9. 11 times-table and division facts.
- 10. 12 times-table and division facts.
- 11. Multiply by 1 and 0.
- 12. Divide a number by 1 and itself.
- 13. Multiply three numbers.

Rosie draws a picture to represent 7×4 in two different ways.

Amir is using partitioning to help him work out 7 × 7

 $28 \div 7 = 4$

84 ÷ 7 = 12

 $42 \div 7 = 6$

 $56 \div 7 = 8$

Key Questions:

- How many equal groups are there?
- How many lots of 7 do you have?
- How many groups of 7 are there in ____?
- What can you partition _____ into to help you multiply _____ by 7?
- If you know this, what else do you know?
- How can you use the 5/6/8 times-table to find a fact in the 7 times-table?
- What is the same and what is different about the number facts?
- How does the 7 times-table help you to work out the answers?
- What strategies can you use to work out the 7 timestable fact that you do not yet know? What other timestables can you use?

Stem Sentences:

- x7 = x7 + x7• x7 = x8 - =• There are 7 groups of _____ in ____ • x7 = x5 + x2
- x 7 = x 8 x 7 = x 6 +
- There are _____ groups of 7 in _____.

multiples 7s link repeated addition multiplication equal groups multiplying flexible partitioning divided division divide sharing lots of partition fact dividing fact families unknown facts known facts mental strategies calculation arrays same different

Small Steps:

- 1. Multiples of 3.
- Multiply and divide by
 6.
- 3. 6 times-table and division facts.
- Multiply and divide by 9.
- 5. 9 times-table and division facts.
- 6. The 3, 6 and 9 timestables.
- Multiply and divide by
 7.
- 8. 7 times-table and division facts.
- 9. 11 times-table and division facts.
- 10. 12 times-table and division facts.
- 11. Multiply by 1 and 0.
- 12. Divide a number by 1 and itself.
- 13. Multiply three numbers.

2 × 10 =	2 × 1 =
2 lots of 10 doughnuts =	2 lots of 1 doughnut =
2 × 10 + 2 × 1 = 2 × 11 =	There are doughnut
	3 × 11 = 33
2 × 10 = 2	0 2×2=4
2 × 12 :	= 24
-	

 $2 \times 12 = 24$

 $1 \times 12 = 12$

 $3 \times 12 = 3$

	Key Questions:
	 How many equal groups are there?
(mail)	 How many lots of 11 do you have?
	 How many groups of 11 are there in?
	 What can you partition 11into to help you?
hnuts.	• How can you use base 10 to work out x 11?
	 How can you use place value counters to work out <u>+</u> 11?
	 How can you show this using an array?
	 How many lots of 12 do you have?
	 How many groups of 12 are there in?
	What can you partition 12 into to help you?
	• How can you use base 10 to work out x 12?
	 How can you use place value counters to work out <u>+</u> 12?
Ļ	
	Stem Sentences:
	• x 11 =
	• x 11 = x 10 + x 1
	 There are groups of 11 in
	 There are 11 groups of in
	• x 12 = x 1- + x 2
	• x 12 = double x 6
6	 There are 12 groups of in
	 There are groups of 12 in

YEAR 4

<u>Key</u> Vocabulary:

1s 10s times-table 11's partition known facts multiply multiplying multiple links patterns connections dividing sharing equal groups commutativity lots of base 10 array 2s 12s doubling

YEAR 4

<u>Key</u> Vocabulary:

Small Steps:

- 1. Multiples of 3.
- Multiply and divide by
 6.
- 3. 6 times-table and division facts.
- Multiply and divide by 9.
- 5. 9 times-table and division facts.
- 6. The 3, 6 and 9 timestables.
- Multiply and divide by 7.
- 8. 7 times-table and division facts.
- 9. 11 times-table and division facts.
- 10. 12 times-table and division facts.
- 11. Multiply by 1 and 0.
- 12. Divide a number by 1 and itself.
- 13. Multiply three numbers.

___×____=____

There are 4 plates. Each plate has zero apples on it.

How many apples are there in total? Complete the multiplication.

4 × _____ = _____

3 lots of 0

Key Questions:

- What does "zero" mean? How can you multiply by zero?
- What do you notice about the results of multiplying numbers by zero?
- What does "multiplying by 1" mean?
- What do you notice about the results of multiplying numbers by 1?
- What is the same and what is different about multiplying by 1 and multiplying by zero?

Stem Sentences:

- Any number multiplied by zero is equal to_____.
- Any number multiplied by 1 is equal to _____.
- _____ groups of one = _____
- _____ groups of zero = _____

DCabular multiplying zero one lots of equal same difference itself groups

YEAR 4

Key **Vocabulary:**

division divide by 1 itself groups grouped equal shared same different multiplying

Small Steps:

- 1. Multiples of 3.
- 2. Multiply and divide by 6.
- 3. 6 times-table and division facts.
- Multiply and divide by 4. 9.
- 5. 9 times-table and division facts.
- The 3, 6 and 9 times-6. tables.
- Multiply and divide by 7. 7.
- 8. 7 times-table and division facts.
- 9. 11 times-table and division facts.
- 10. 12 times-table and division facts.
- 11. Multiply by 1 and 0.
- 12. Divide a number by 1 and itself.
- 13. Multiply three numbers.

4 shared into 1 equal group is equal to _____ 4 grouped into groups of 1 is equal to _____ 4 ÷ 1 = _____

How many pears does each child get?

3 ÷ 3 = _____

She shares them equally between her 7 friends.

How many cookies does each friend get?

7÷____=

٠

Key Questions:

- How many equal groups of _____ can you make?
- What is _____ shared equally into 1 group?
- What is _____ grouped into groups of 1?
- What is the same and what is different about multiplying by 1 and dividing by 1?
- What is the same and what is different about dividing a number by 1 and dividing a number by itself?

Which of the divisions have an answer of 1?

Without working out the divisions, write <, > or = to compare the statements.

- When you divide a number by itself, the answer is...
- When you divide a number by _____, the number remains the same.
- There are _____1s in _____.

YEAR 4

Key Vocabulary:

multiplication three associative law commutativity order change group efficiently counters cubes multiply left right pairs product alculations arrays

Small Steps:

- 1. Multiples of 3.
- 2. Multiply and divide by 6.
- 3. 6 times-table and division facts.
- Multiply and divide by 4. 9.
- 5. 9 times-table and division facts.
- The 3, 6 and 9 times-6. tables.
- Multiply and divide by 7. 7.
- 8. 7 times-table and division facts.
- 9. 11 times-table and division facts.
- 10. 12 times-table and division facts.
- 11. Multiply by 1 and 0.
- 12. Divide a number by 1 and itself.
- 13. Multiply three numbers.

Alex	Teddy
6 × 5 × 2 = 6 × 5 × 2	6 × 5 × 2 = 6 × 5 × 2
= 30 × 2	= 6 × 10
= 60	= 60

Whose method do you prefer?

Is one method more efficient than the other?

Key Questions:

- Do you have to multiply the numbers from left to right?
- Which pair(s) of numbers do you know the product of?
- How will you decide which order to do the multiplication in?
- What is the same about these calculations/arrays?
- Which order do you find easier to calculate efficiently?
- If you worked out the calculation in a different order, would you get a different answer? Why? Why not?

Is the statement true or false?

Explain your reasoning.

Choose three 0 5

2	3	4
7	8	9

How many different calculations can you make?

What is the most efficient order to use to work out the product?

- I am going to work out x first, because...
- To work out _____ x ____, I can first calculate _____ x ____
- and then multiply the answer by _____. If x =, then x =

1 × _____ = 12

_____×____= 12

× 6 = 12

Small Steps:

- 1. Factor pairs.
- 2. Use factor pairs.
- 3. Multiply by 10.
- 4. Multiply by 100.
- 5. Divide by 10.
- 6. Divide by 100.
- 7. Related facts multiplication and division.
- 8. Informal written methods for multiplication.
- 9. Multiply a 2-digit number by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

Complete the factor pairs of 12 and the sentences.

•••••

12 has _____ factor pairs.

12 has _____ factors altogether.

Use counters to create arrays and find the factor pairs for each number.

Complete the factor bug for 20

<u>Key Questions:</u>

- How can you use arrays to help you find all the factors of a number?
- How do you know that you have found all the factors of _____?
- How do arrays help you to see when a number is not a factor of another number?
- Which number is a factor of every whole number?
- Do factors always come in pairs?
- Do whole numbers always have an even number of factors?
- How does knowing the factor pairs of 8 help you to find an equivalent calculations to 7 x 8?
- For which number are you going to find the factor pairs?
- Which factor pair is the most helpful to solve the calculation?
- In what order are you going to multiply these numbers?
- Does it matter which factor pair you use?

<u>Stem Sentences:</u> _____= ____ x ____, so ____ and ____ are a factor pair of _____. ____ has ____ factors altogether. The factor pairs of _____ are ____.

- 12 = _____x ____, so _____x 12 = _____x ____x
- I can use the factor pairs of _____ to find an equivalent calculation because....

YEAR 4

<u>Key</u> Vocabulary:

factors multiply whole product factor pair divides exactly arrays multiplication division equivalent calculations easiest mentally times-tables

3 × 1 ten = _____ tens

3 × 10 = _____

I need to exchange

to find the answer.

YEAR 4

<u>Small Steps:</u>

- 1. Factor pairs.
- 2. Use factor pairs.
- 3. Multiply by 10.
- 4. Multiply by 100.
- 5. Divide by 10.
- 6. Divide by 100.
- 7. Related facts multiplication and division.
- 8. Informal written methods for multiplication.
- 9. Multiply a 2-digit number by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- 11. Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

. . .

Use the base 10 to complete the sentences.

3 × 1 one = _____ ones

3 × 1 = _____

What do you notice?

Mo represents 21 \times 10 using place value counters.

What exchanges does Mo need to make?

What is 21 × 10?

Dexter uses a place value chart to work out 32 × 10

Write <, > or = to compare the multiplications.

- What do you notice when multiplying by 10/100?
- What is a placeholder? When do you use placeholders?
- What happens to the digits in a number when you multiply by 10/100?
- How can you use a place value chart to show multiplying _____ by 10/100?
- What is _____ multiplied by 10?
- What is 10 lots of ____?
- How can you use multiplying by 10 to help you multiply by 100?
- What is _____ multiplied by 100?
- What is 100 lots of ____?

There are 8 jars.

Each jar contains 100 drawing pins,

How many drawing pins are there altogether?

Key Vocabulary: multiplying ten times the size one hundred place value digits move zero placeholder column whole number lots of

Th

Th

YEAR 4

Key

Small Steps:

- . Factor pairs.
- 2. Use factor pairs.
- 3. Multiply by 10.
- 4. Multiply by 100.
- 5. Divide by 10.
- 6. Divide by 100.
- 7. Related facts multiplication and division.
- 8. Informal written methods for multiplication.
- 9. Multiply a 2-digit number by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- 11. Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

the	ten	frame	and	counters	to	complete	the	sentences
-----	-----	-------	-----	----------	----	----------	-----	-----------

н

÷ 100

õõ

50 = _____ groups of 10

50 ÷ 10 = _____

I can see that when I divide by 100, all the

counters move two places to the right on a place

value chart.

3,400 ÷ 100 = 34

••	There are groups of 100 in 400
	400 ÷ 100 =

Complete the calculation shown by the array.

er |). er 2).

3,600 ÷ 10 () 3,600 ÷ 100 $2,700 \div 100$ 270 ± 10

<u>Key Questions:</u>

- What do you notice when dividing by 10?
- Why does this happen?
- What happens to the digits when you divide by 10/100?
- How can you use a place value chart to show dividing _____ by 10/100?
- What is _____ divided by 10/100?
- What number is one-tenth the size of _____?
- What happens when you divide a number by 10 and then divide the answer by 10 again? How does the final answer compare to the original number?
- How can you use dividing by 10 to help you divide by 100?
- What number is one-hundredth the size of _____?

Vocabulary: divide whole numbers ten one-tenth one-tenth the size place value digits position calculation one place column right multiplying inverse zero hundred one-hundredth one-hundredth the size two places

- _____ \div 10 = ____ • ____ = ____ \div 10 • _____ is one-tenth the size of _____. • ____ \div 100 = _____ \div 10 \div 10 = _____ \div 10 = _____ • ____ \div 100 = _____, so ____ = ____ \div 100
- _____ is one-hundredth the size of _____.

Small Steps:

- 1. Factor pairs.
- 2. Use factor pairs.
- 3. Multiply by 10.
- 4. Multiply by 100.
- 5. Divide by 10.
- 6. Divide by 100.
- 7. Related facts multiplication and division.
- 8. Informal written methods for multiplication.
- 9. Multiply a 2-digit number by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- 11. Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

Write two multiplication facts and two division facts represented by each array.

What is the same and what is different about the arrays?

I know that

3 x 5 ones = 15 ones.

so 3 x 5 tens = 15 tens.

I know that 12 ones ÷ 3 is equal to 4 ones.

So 12 hundreds + 3 is

equal to 4 hundreds.

 $1.200 \div 3 = 400$

Mo is working out 1,200 ÷ 3

 $3 \times 50 = 150$

Stem Sentences:

_ is equal to ____, so ____ tens ÷ ____ is equal to ____ tens.

ones is equal to _____ ones, so _____ x ____ tens is equal to _____ tens.

<u>Key Questions:</u>

- What is the same and what is different about the two calculations?
- How can you represent the calculation using place value counters?
- How does knowing that _____ is 10 times the size of _____ help you to complete the calculation?
- What calculation do you know that would help with this one?

Write <, > or = to compare the calculations.

Key Vocabulary: calculations related known facts scaling facts ten hundred relationship division multiplication commutative one same/different place value 10 times the size equal to

YEAR 4

Is the statement true or false?

```
6 \times 800 = 8 \times 600
```

Explain your answer.

YEAR 4

Key

Small Steps:

- Factor pairs.
- 2. Use factor pairs.
- Multiply by 10. 3.
- Multiply by 100. 4.
- 5. Divide by 10.
- Divide by 100. 6.
- 7. Related facts multiplication and division.
- 8. Informal written methods for multiplication.
- Multiply a 2-digit number ٩. by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- 11. Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

Tens	Ones

Use Aisha's method to work out the multiplications.

Teddy is using a number line to work out 8 × 26

Use Teddy's method to work out the multiplications.

0

Key Questions:

- What is the same and what is different about multiplying by 1s and multiplying by 10s?
- How would you explain this method?
- What is the most efficient way to work out _____ x ____?
- How could you use a number line to work out this calculation?
- How could you use a part-whole model to partition into tens and ones?

Use Ron's method to work out the multiplications.

56 × 3 24 × 8 36 × 4 **Stem Sentences:** partitioned into tens and ones is _____ and _____. ____ x ____ = ____ tens x ____ + ____ ones x _____ = ____ tens + ____ ones = ____.

tens ones number lines same/different efficient calculation

Vocabulary: informal written method 2-digit multiply number 1-digit place value multiples repeated addition partition part-whole model

YEAR 4

<u>Key</u> Vocabulary:

multiplying informal written methods formal written methods short multiplication method expanded form formal short single-line form calculations exchanges place value same/different ones tens column equal

Small Steps:

- Factor pairs.
- 2. Use factor pairs.
- 3. Multiply by 10.
- 4. Multiply by 100.
- 5. Divide by 10.
- Divide by 100. 6.
- 7. Related facts multiplication and division.
- Informal written methods 8. for multiplication.
- Multiply a 2-digit number ٩. by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- 11. Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

Jo uses place value counters to work out 24 × 3

Tens

000

000

Tens	Ones
00	0000
00	0000
00	0000

- What is the same about their methods?
- What is different about their methods?
- Whose method is more efficient?

	Scott					
			н	Т	0	
				3	4	
		×			5	
(4 × 5)			1	7	0	
30 × 5)			1	2		

Key Questions:

- What is the same and what is different about multiplying by 1s and multiplying by 10s?
- How does the written method match the representation?
- Which column should you start with?
- What is the same and what is different about the different methods?

Here are three incorrect multiplications.

What mistakes have been made?

Complete the calculations correctly.

- ____ ones x ____ = ____ ones
- tens x x tens.
- To multiply a 2-digit number by _____, you multiply the _____ by _____ and the _____ by _____.
- _____ tens multiplied by _____ plus the ten I exchange is equal to _____ tens.

Small Steps:

- Factor pairs.
- Use factor pairs. 2.
- Multiply by 10. 3.
- Multiply by 100. 4.
- 5. Divide by 10.
- Divide by 100. 6.
- 7. Related facts multiplication and division.
- Informal written methods 8. for multiplication.
- Multiply a 2-digit number ٩. by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- 11. Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

)	000			н	т	ο
						-	-
		000			2	1	3
00 0)	000		×			3

Tens	Ones							
00				Τh	Н	т	ο	
00					3	2	0	
00			×				4	
00			-			_		
	Tens 0 0 0 0 0 0 0 0 0 0 0 0 0	Tens Ones 10 0 10 0 10 0 10 0 10 0 10 0	Tens Ones 10 0 10 0 10 0 10 0 10 0	Tens Ones I 10 I I I	Tens Ones I I 10 0 I I Th 10 0 I I I 10 0 I I I	Tens Ones I I 10 0 I I I I I 10 0 I	Tens Ones I I I 10 10 1	Tens Ones ① · </td

A school has 4 house teams.

10100

.....

.....

There are 234 children in each house team.

How many children are there altogether?

Hundreds	Tens	Ones						
100 100	000				н	т	ο	
	000	0000			2	3	4	
00	000	0000		×			4	
	000	0000						
<u> </u>								

Complete the calculations.

														[
	н	Т	0			н	Т	0			Н	т	0	
	2	0	5			1	4	8			7	4	6	
×			3		×			6		×			5	

Key Questions:

- How could you use counters to represent the multiplication?
- How does the written method match the representation?
- Which column should you start with?
- Do you need to make an exchange? What exchange can you make?
- What is the same and what is different about multiplying a 3-digit number by a 1-digit number and multiplying a 2digit number by a 1-digit number?
 - Arrange the digit cards in the multiplication.

What is the greatest possible product? Now arrange the cards to make the

smallest possible product.

Stem Sentences:

- ones x _____ = ____ ones
- tens x _____ = ____ tens
- hundreds x = hundreds.
- tens/hundreds multiplied by _____ plus the ten/hundred from the exchange is equal to .

YEAR 4

Key Vocabulary:

formal written method multiplying 3-digit number 1-digit number short multiplication columns place value exchanges tens ones hundreds thousands expanded method same/different equal to

YEAR 4

Key

Small Steps:

- Factor pairs.
- 2. Use factor pairs.
- Multiply by 10. 3.
- Multiply by 100. 4.
- 5. Divide by 10.
- Divide by 100. 6.
- Related facts -7. multiplication and division.
- 8. Informal written methods for multiplication.
- Multiply a 2-digit number ٩. by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- 11. Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

Teddy uses a place value chart to divide 84 by 4

Use Teddy's method to work out the divisions.

96 ÷ 3 69 ÷ 3 88 ÷ 4

Complete the calculations.

- 46 ÷ 2 = _____ tens ÷ 2 and _____ ones ÷ 2
 - = _____ tens and _____ ones
- ▶ 63 ÷ 3 = _____ tens ÷ 3 and _____ ones ÷ 3
 - = _____ tens and _____ ones
- Tens Ones 0000 00 00 00000 00 0000 00 0000

97 ÷ 4 = 24 r1

Key Questions:

- How do you partition a 2-digit number into tens and ones? How else can you partition a 2-digit number?
- Which is the most efficient way to partition the number so you can divide both parts by _____
- If you cannot share all of the tens equally, what do you need to do?
- How can you represent the division using a part-whole model?
- Can the counter be shared equally? If not, how many are formal short division left over?
- What does "remainder" mean?
- What is the greatest remainder you can have when you are dividing by ____?
- How can you partition a 2-digit number?
- If you cannot share all the tens equally, what do you need to do?
- If you cannot share all the ones equally, what happens?
- How do you know that $43 \div 2$ will have a remainder?

Vocabulary: division dividing 2-digit 1-digit tens ones remainders exchange place value part-whole model partition efficient equally calculation greater left over share

- **Stem Sentences:**
- tens divided by _____ _ = _____ tens each.
 - ones divided by _____ = ____ ones each.
- I cannot share all of the tens equally, so I need to...
- If I am dividing by _____, then the greatest possible remainder is _____.

=_____

 $639 \div 3 = 213$

Small Steps:

- . Factor pairs.
- 2. Use factor pairs.
- 3. Multiply by 10.
- 4. Multiply by 100.
- 5. Divide by 10.
- 6. Divide by 100.
- 7. Related facts multiplication and division.
- 8. Informal written methods for multiplication.
- 9. Multiply a 2-digit number by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- 11. Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

Use 12 counters and the place value chart to make the numbers described.

Use all 12 counters to make each number.

- a 3-digit number divisible by 2
- a 3-digit number divisible by 3
- a 3-digit number divisible by 4
- a 3-digit number divisible by 5

Is it possible to make 3-digit numbers that are divisible by 6, 7, 8 or 9?

<u>Key Questions:</u>

- How do you partition a 3-digit number into hundreds, tens and ones?
- How else can you partition a 3-digit number?
- What is the best way to partition the number to help you work out the division?
- If you cannot share all of the hundreds/tens equally, what do you need to do?
- How can you represent the division using a part-whole model?

multiples remainder formal written method hundreds tens ones

equally

left over

Stem Sentences:

- _____ hundreds divided by _____ = ____ hundreds
- tens divided by ____ = ____ tens
- _____ ones divided by _____ = _____ ones.
- There is _____ left over, so I need to exchange it for_____.

YEAR 4

<u>Key</u> <u>Vocabulary:</u> division

2-digit

3-digit

place value

calculations

exchanges

part-whole model

flexible partitioning

Small Steps:

- 1. Factor pairs.
- 2. Use factor pairs.
- 3. Multiply by 10.
- 4. Multiply by 100.
- 5. Divide by 10.
- 6. Divide by 100.
- 7. Related facts multiplication and division.
- 8. Informal written methods for multiplication.
- 9. Multiply a 2-digit number by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- 11. Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

A cafe has 4 flavours of ice cream and 2 choices of toppings.

Ice cream flavours	Toppings
vanilla chocolate strawberry lemon	sauce wafer

 Complete the table to show the 8 possible combinations of flavours and toppings.

	Sauce	Wafer
Vanilla		vw
Chocolate		
Strawberry		SW
Lemon	LS	

Esther is choosing what to wear on a snowy day.

- How many different ways can Esther choose a hat and a scarf?
- How many different ways can Esther choose a hat and a pair of gloves?
- How many different ways can Esther choose a hat, a scarf and a pair of gloves?

How can you check your answers?

<u>Key Questions:</u>

- How can you use a table to help you find the possible combinations?
- How can you be sure that you have listed all the possibilities?
- How could you use a code to help you list the combinations?
- What do you notice about the number of choices for each item and the total number of combinations?
- How can you check your answer?
- Does the order in which you make your choices matter?

Huan has two piles of coins.

He chooses one coin from each pile.

- List all the possible combinations of coins Huan could choose.
- How many different combinations of coins are there?
- List all the possible total amounts of money Huan can make.
- How many different total amounts of money are there?

Stem Sentences:

- For every _____, there are _____
- Altogether, there are _____ x ____ = ____ possible combinations.

YEAR 4

Key Vocabulary: multiplication combinations sets times-tables possibilities total table code choices altogether

Here are four different ways of working out 15 × 8 mentally.

Complete the calculation in each method.

Small Steps:

- I. Factor pairs.
- 2. Use factor pairs.
- 3. Multiply by 10.
- 4. Multiply by 100.
- 5. Divide by 10.
- 6. Divide by 100.
- 7. Related facts multiplication and division.
- 8. Informal written methods for multiplication.
- 9. Multiply a 2-digit number by a 1-digit number.
- 10. Multiply a 3-digit number by a 1-digit number.
- 11. Divide a 2-digit number by a 1-digit number (1).
- 12. Divide a 2-digit number by a 1-digit number (2).
- 13. Divide a 3-digit number by a 1-digit number.
- 14. Correspondence problems.
- 15. Efficient multiplication.

 $15 \times 8 = 10 \times 8 + 5 \times 8$ = 80 + _____ = ____ Method 2 $15 \times 8 = 3 \times 5 \times 8$ = 3 × _____ = ____ Method 3 $15 \times 8 = 15 \times 10 - 15 \times 2$ = _____

Method 4

 $15 \times 8 = 30 \times 8 \div 2$

= _____÷ 2

=_____

Method 1

<u>Key Questions:</u>

- Which method do you find most efficient? Explain how this method works?
 - What is the most efficient way to work out _____ x ____?
- What happens if you double one factor and halve the other?
- How could you use factor pairs to help you calculate?

Jack and Sam are working out 7 × 6

- Use Jack's method to work out 8 × 6
- Use Sam's method to work out 9 × 6

YEAR 4

Key

Vocabulary: multiplication efficient methods times-tables unknown facts strategies multiplying 2-digit 1-digit arrays multiplicative structure associative law distributive law double factor halve factor pairs

<u> Maths – Fractions</u>

YEAR 4

<u>Small Steps:</u>

- I. Understand the whole.
- 2. Count beyond 1.
- 3. Partition a mixed number.
- 4. Number lines with mixed numbers.
- 5. Compare and order mixed numbers.
- 6. Understand improper fractions.
- 7. Convert mixed numbers to improper fractions.
- 8. Convert improper fractions to mixed numbers.
- 9. Equivalent fractions on a number line.
- 10. Equivalent fraction families.
- 11. Add two or more fractions.
- 12. Add fractions and mixed numbers.
- 13. Subtract two fractions.
- 14. Subtract from whole amounts.
- 15. Subtract from mixed numbers.

Which shapes have been split into equal parts?

Complete the sentences for each shape.

The whole is divided into _____ equal parts. Each part is worth $\frac{1}{\Box}$

What fraction of each diagram is shaded in each colour?

What fraction of each diagram represents the whole?

Shade the shapes to make one whole.

Complete the sentences for each diagram.

To make 1 whole, I shaded _____ equal parts.

The fraction I shaded was _____

Key Questions:

- Has the whole been divided into equal parts? How do you know?
- In this diagram, how many equal parts has the whole been divided into?
- How many equal parts has the whole been divided into for 1/5?
- Is this a large or small part of the whole? How do you know?
- How many more parts are needed to make the whole? What fraction would this be?

Complete the additions.

Use the information in the table to draw each whole.

1 part	Number of parts in the whole
	5
	4
	3

- The whole has been divided into _____ equal parts. has been shaded.
- To make 1 whole, I need to shade _____ equal parts.
- This is ____.

<u>Key</u> <u>Vocabulary:</u> whole part-whole equal parts shape more denominator divided small/large

<u> Maths – Fractions</u>

<u>Small Steps:</u>

- 1. Understand the whole.
- 2. Count beyond 1.
- 3. Partition a mixed number.
- 4. Number lines with mixed numbers.
- 5. Compare and order mixed numbers.
- 6. Understand improper fractions.
- 7. Convert mixed numbers to improper fractions.
- 8. Convert improper fractions to mixed numbers.
- 9. Equivalent fractions on a number line.
- 10. Equivalent fraction families.
- 11. Add two or more fractions.
- 12. Add fractions and mixed numbers.
- 13. Subtract two fractions.
- 14. Subtract from whole amounts.
- 15. Subtract from mixed numbers.

Fill in the missing numbers.

Complete the number line, counting in sixths.

Complete the number lines.

Key Questions:

- What fraction comes next after 4/7, 5/7, 6/7? How do you know?
- What fraction comes before ____? How do you know?
- What do you know about a fraction with the same numerator and denominator?
- What is 1 whole plus another 1/3? How could you draw that as a bar model?
- What is 3 and 5/5 the same as?
- What is the sequence counting forwards/backwards in?

Vocabulary: whole greater than 1 one forwards/backwards fractions within 1 number lines bar models unit fractions numerator denominator non-unit fractions mixed numbers equal equivalent add/plus same as next/before sequence counting

Stem Sentences:

- There are _____s in 1.
- The sequence is counting forwards/backwards in _____s.

YEAR 4

Key

Small Steps:

- Understand the whole.
- Count beyond 1. 2.
- Partition a mixed number. 3.
- Number lines with mixed 4. numbers.
- 5. Compare and order mixed numbers.
- Understand improper 6. fractions.
- Convert mixed numbers to 7. improper fractions.
- 8. Convert improper fractions to mixed numbers.
- ٩. Equivalent fractions on a number line.
- 10. Equivalent fraction families.
- 11. Add two or more fractions.
- 12. Add fractions and mixed numbers.
- 13. Subtract two fractions.
- 14. Subtract from whole amounts.
- 15. Subtract from mixed numbers.

What mixed number is shown in each diagram?

Use the digit cards to complete the statements.

You can use each card once only.

Find all the possible solutions.

Use the diagram to help you complete the part-whole model.

٠

٠

٠

fraction?

What is a mixed number?

What is the fractional part of ____?

\		
)		
/		

Key Questions:

How can you partition the mixed number into wholes and a

How many other ways could you partition the mixed number?

What does each part of a mixed number represent?

How many wholes are there in the mixed number _____?

Complete the part-whole models to show the wholes and fractions in the mixed numbers.

<u>Stem</u>	<u>Sentences:</u>
There are wholes	
There are	
The mixed number is _	

can be partitioned into wholes and

Key Vocabulary:

YEAR 4

mixed numbers partitioning whole fractional parts part-whole models bar models fraction

2.

3.

4.

5.

6.

7.

8.

٩.

Maths – Fractions

YEAR 4

Key Vocabulary:

<u> Maths – Fractions</u>

<u>Small Steps:</u>

- 1. Understand the whole.
- 2. Count beyond 1.
- 3. Partition a mixed number.
- 4. Number lines with mixed numbers.
- 5. Compare and order mixed numbers.
- 6. Understand improper fractions.
- 7. Convert mixed numbers to improper fractions.
- 8. Convert improper fractions to mixed numbers.
- 9. Equivalent fractions on a number line.
- 10. Equivalent fraction families.
- 11. Add two or more fractions.
- 12. Add fractions and mixed numbers.
- 13. Subtract two fractions.
- 14. Subtract from whole amounts.
- 15. Subtract from mixed numbers.

Fill in the missing numbers.

What do you notice?

 $\frac{30}{10} =$ _____

Fill in the missing numbers.

 $ightharpoonup 6 = \frac{10}{10}$

► <u>110</u> = ____

Key Questions:

- How many _____ (for example, thirds) are there in 1 whole?
- So how many _____ (for example, thirds) will there be in 2/3/4 wholes?
- What do you think comes next in this count: 3 fifths, 4fifths, 5fiiths?
- What is the same and mixed numbers and improper fractions? What is different?
- If there are 10 tenths in 1 whole, how many tenths are there ins 1 whole and 1/10?
- Which of these are improper fractions? How do you know?

Use the digit cards to make as many improper fractions as you can.

Which of the improper fractions are greater than 1 and less than 2? Which of the improper fractions are

greater than 2 and less than 3?

Stem Sentences:

An improper fraction is a fraction where the numerator is _____ the denominator. There are _____ in 1 whole, so there are _____ in 2/3/4 wholes.

YEAR 4

K<u>ey</u>

Vocabulary: fractions greater than 1 mixed numbers improper fractions numerator greater than equal to denominator whole integers bar model number lines next same/different

YEAR 4

Key Vocabulary:

mixed number improper fractions convert bar models number lines times-table equivalent integer adding fractional parts worth altogether division groups of remainder

Small Steps:

- Understand the whole.
- Count beyond 1. 2.
- Partition a mixed number. 3.
- Number lines with mixed 4. numbers.
- Compare and order mixed 5. numbers.
- Understand improper 6. fractions.
- Convert mixed numbers to 7. improper fractions.
- Convert improper fractions 8. to mixed numbers.
- Equivalent fractions on a ٩. number line.
- 10. Equivalent fraction families.
- 11. Add two or more fractions.
- 12. Add fractions and mixed numbers.
- 13. Subtract two fractions.
- 14. Subtract from whole amounts.
- 15. Subtract from mixed numbers.

Eva and Jack are converting $\frac{13}{4}$ to a mixed number.

 $\begin{pmatrix} 1\\4 \end{pmatrix} \begin{pmatrix} 1\\$

Key Questions:

- What is the integer in the mixed number ____? ٠
- What is the fractional part of the mixed number _____? •
- How do you know if a fraction is improper? ٠
- How many fifths are there in 2/3/4 wholes? What do you • notice?
- If there are 8 quarters in 2, how many more quarters do you need to add for the mixed number 2 3/4?
- What do you noticed about the improper fraction equivalences of $2\frac{2}{9}, 2\frac{3}{9}, 2\frac{4}{9}/2\frac{2}{9}, 3\frac{2}{9}, 4\frac{2}{9}$?
- How ao you know _____ is an improper fraction? ٠
- How many quarters are there in 15/4?
- How many quarters are there in 1/2/3 wholes?
- How many groups of 4 are there in 15? What is the remainder?

How can you write that as a mixed number?

- Stem Sentences:
- All the wholes are worth
- Adding the fractional part means that altogether there are
- There are _____ in 1 whole?
- There are _____ groups of _____ and _____ remaining.

So as a mixed number is .

<u> Maths – Fractions</u>

YEAR 4

<u>Key</u> <u>Vocabulary:</u>

number lines equivalent fractions equal in value integer mixed numbers improper fractions unit fraction intervals consecutive within 1 greater than 1 bar models equally fraction wall equivalent fraction families smaller parts

> split divide

Stem Sentences:

- There are _____ equal intervals between consecutive integers, so the number line is counting in _____s.
- I know that _____ is equivalent to _____ because...

Key Questions:

What unit fraction is the number like counting in?

How do you know that _____ is equivalent to _____?

What is _____ as a mixed number/improper fraction?

How many other ways could you split each part?

fraction does each part now represent?

do not have any equivalent fractions?

do they need to be equal in size?

How can you split each section into 2/3/4 equal smaller

If you split each part into _____ equal smaller parts, what

Why do you need to split all of the existing parts? Why

Are there any fractions on the fraction wall that do not

have any equivalent fractions shown? Does this mean they

Why do the integers have to be in line with each other?

How do you know that 2 and 1/3 cannot be equivalent to

What are equivalent fractions?

4 and 2/6?

parts?

- To split the number line into _____, I need to split each interval into _____ equal sections.
- If I divide each part into _____ equal parts, then they will each represent
- I can divide each part into _____ equal parts to show that _____ is equival ____ to

<u>Small Steps:</u>

- I. Understand the whole.
- 2. Count beyond 1.
- 3. Partition a mixed number.
- 4. Number lines with mixed numbers.
- 5. Compare and order mixed numbers.
- 6. Understand improper fractions.
- 7. Convert mixed numbers to improper fractions.
- 8. Convert improper fractions to mixed numbers.
- 9. Equivalent fractions on a number line.
- 10. Equivalent fraction families.
- 11. Add two or more fractions.
- 12. Add fractions and mixed numbers.
- 13. Subtract two fractions.
- 14. Subtract from whole amounts.
- 15. Subtract from mixed numbers.

Label the number lines,

Use the number lines to complete the equivalent fractions.

YEAR 4

Key

Small Steps:

- Understand the whole.
- Count beyond 1. 2.
- Partition a mixed number. 3.
- Number lines with mixed 4. numbers.
- Compare and order mixed 5. numbers.
- Understand improper 6. fractions.
- Convert mixed numbers to 7. improper fractions.
- Convert improper fractions 8. to mixed numbers.
- Equivalent fractions on a ٩. number line.
- 10. Equivalent fraction families.
- 11. Add two or more fractions.
- 12. Add fractions and mixed numbers.
- 13. Subtract two fractions.
- 14. Subtract from whole amounts.
- 15. Subtract from mixed numbers.

Amir uses a number line to add fractions.

What calculation is Amir working out? What is the answer?

Tommy works out an addition.

Do you agree with Tommy?

Explain your answer.

Key Questions:

- Are the denominators the same? Why is this important? ٠
- How can you show the addition in a diagram/bar model? How could a number line help you? ٠
- If you answer greater or smaller than 1? How do you know?
- How do you convert an improper fraction to a mixed number?
- How is adding three fractions different from adding two fractions?
- How would you explain how to add fractions to someone who ٠ does not understand?
- Are the denominators the same? Why is this important? ٠
- How is adding two fractions different from adding a fraction and a whole number? How is it different from adding a fraction and a mixed number?
- Do you prefer to use a bar model or a number line? Why? How could you partition the fraction to help you work out the answer?
- Do you have an improper fraction in your answer? How should you write the mixed number?

Stem Sentences:

- When the denominators are the same, to add the fractions add the _____. ٠
- 🛄 is the same as ____ (for example, 5/4 is the same as 11⁄4).
- can partition into and

Vocabulary: add fractions denominator same/different proper fractions mixed numbers equal parts bar models counting on number line greater than 1 total within 1 convert greater/smaller difference/different crossing a whole partitioning whole number

YEAR 4

Key Vocabulary:

subtract fractions same/different denominator numerators bar models taking away partitioning difference proper/improper whole numbers mixed numbers greater/smaller minus equal to equal parts

equivalent

Small Steps:

- Understand the whole.
- Count beyond 1. 2.
- Partition a mixed number. 3.
- Number lines with mixed 4. numbers.
- Compare and order mixed 5. numbers.
- Understand improper 6. fractions.
- Convert mixed numbers to 7. improper fractions.
- Convert improper fractions 8. to mixed numbers.
- ٩. Equivalent fractions on a number line.
- 10. Equivalent fraction families.
- 11. Add two or more fractions.
- 12. Add fractions and mixed numbers.
- 13. Subtract two fractions.
- 14. Subtract from whole amounts.
- 15. Subtract from mixed numbers.

Annie is using a number line to show that $\frac{7}{6} - \frac{5}{6} = \frac{2}{6}$

Use the diagrams to work out the subtractions.

Complete the part-whole models.

Key Questions:

- Are the denominators the same? Why is this important?
- How could you represent the subtraction in a diagram/bar model?
- How would a number line help you? ٠
- If your answer greater or smaller than 1? How do you know?
- What is the same when you adding or subtracting fractions with the same denominator? What is different?
- How would you explain how to subtract fractions to someone who does not understand?
- How many _____ are equal to 1 whole/2 wholes/5 wholes?
- What is the connection between the numerator in the question and the numerator in the answer when you subtract a fraction from 1?
- How can you show the problem using a bar model/number line? How many of the wholes are affected when you subtract a fraction?

How can you partition the whole number to help with subtracting?

Stem Sentences:

- If the denominators are the same, to subtract the fractions I need to subtract the
 - minus is equal to _____.

 $1 - \bigsqcup_{=} = \bigsqcup_{=}, \text{ so } 2 - \bigsqcup_{=} - 1 \bigsqcup_{=}$

1 whole is equal to \bigsqcup , so the wholes are equal to

Brett

Small Steps:

- Understand the whole.
- Count beyond 1. 2.
- 3. Partition a mixed number.
- Number lines with mixed 4. numbers.
- 5. Compare and order mixed numbers.
- Understand improper 6. fractions.
- Convert mixed numbers to 7. improper fractions.
- 8. Convert improper fractions to mixed numbers.
- ٩. Equivalent fractions on a number line.
- 10. Equivalent fraction families.
- 11. Add two or more fractions.
- 12. Add fractions and mixed numbers.
- 13. Subtract two fractions.
- 14. Subtract from whole amounts.
- 15. Subtract from mixed numbers.

Aisha uses a bar model to show that $2\frac{2}{3} - 1 = 1\frac{2}{3}$ What do you notice?

Ron uses a bar model to show that $2\frac{2}{3} - \frac{1}{3} = 2\frac{1}{3}$.

What is the same about the methods? What is different?

Key Questions:

- How is subtracting from a mixed number different from subtracting from wholes or fractions? How is it the same?
- How can you show the subtraction as a bar model?
- Will you subtract whole bars or parts of bars? ٠
- How can you show the subtraction on a number line?
- How can you partition the mixed number/fraction to help you solve the calculation?
- If you subtracted back to the previous whole number, why would this help?

What subtraction does the bar model show?

How do you know?

A piece of ribbon is $3\frac{1}{4}$ m long.

Tom and Alex cut off $\frac{3}{4}$ m of ribbon each.

Nijah needs 2 m of ribbon to complete an art project.

Is there enough ribbon left for Nijah?

Explain your answer.

Stem Sentences:

If the denominators are the same, to subtract the fractions I need to subtract the

I can partition _____ into _____ and __

When I subtract a whole number from a mixed number, the _____ stays the same.

Key Vocabulary:

YEAR 4

subtract mixed numbers whole bar models number lines cross a whole fractions same/different partition calculation previous denominators

0

YEAR 4

<u>Key</u> Vocabulary:

<u>Small Steps:</u>

- I. Tenths as fractions.
- 2. Tenths as decimals.
- 3. Tenths on a place value chart.
- 4. Tenths on a number line.
- 5. Divide a 1-digit number by 10.
- 6. Divide a 2-digit number by 10.
- 7. Hundredths as fractions.
- 8. Hundredths as decimals.
- 9. Hundredths on a place value chart.
- 10. Divide a 1- or 2-digit number by 100.

What fraction does each picture show?

Continue Scott's counting until you reach 1

Complete the number line counting in tenths.

Complete the table.

Picture	Words	Fraction	Decimal
	one tenth	<u>1</u> 10	0.1
			0.9

<u>Key Questions:</u>

- What is a fraction/decimal?
- What is a tenth?

.

- If a whole is divided into 10 equal parts, what is the value of each part?
- How can you represent the fraction/decimal _____ using a model?
- When you are counting up in tenths, what comes before/after ____?
- When you are counting up in tenths, what comes after 9/10?
- How are tenths similar to ones?
- How are decimals similar to fractions?
- How can you convert between tenths as fractions and tenths as decimals?
- How is 1/10 similar to 0.1? How is it different?

unit fractions non-unit fractions compare/order dividing hundred equal parts number line tenths fraction whole split value before/after similar decimal numbers decimal point tenths column place value same/different

- When a whole is split into _____ equal parts, one of those parts is worth
- When counting in tenths, the number before/after _____ is _____.
- If a whole is split into 10 equal parts, then each part is worth _____.
- Zero point _____ is equal to _____ tenths.
- _____ as a fraction/decimal is ______.

Small Steps:

- . Tenths as fractions.
- 2. Tenths as decimals.
- 3. Tenths on a place value chart.
- 4. Tenths on a number line.
- 5. Divide a 1-digit number by 10.
- 6. Divide a 2-digit number by 10.
- 7. Hundredths as fractions.
- 8. Hundredths as decimals.
- 9. Hundredths on a place value chart.
- 10. Divide a 1- or 2digit number by 100.

represent the number 1.3

Mo is counting up in tenths. When he gets to 10 tenths, he exchanges them to make 1 one.

Complete the number tracks.

		0.7	0.9	1.1	1.2
Г	2.2	2.4	2.0	2.2	

Teddy uses place value counters and a place value chart to

2.2 2.4 2.8 3.2

Dani is counting in tenths on a number line.

Finish labelling Dani's number line.

<u>Key Questions:</u>

- What is a tenth?
- What is a decimal point?
- If you have ____ in the tenths column, what number do you have?
- How many tenths make 1 whole?
- If you have 10 in the tenths column, can you make an exchange?
- How many wholes/tenths are in the number ____?
- How can you show these numbers on a number line?
- If there are 10 intervals between two whole numbers, what is each interval worth?
- How can you work out he missing number in the sequence?
- What intervals does the number line go up in?
- How do you count in 0.1s past a whole number?

Stem Sentences:

- There are _____ tenths in 1 whole.
- 1 whole is equivalent to ____ tenths.
- There is/are _____ whole/wholes and _____ tenths.
- The number is ____.
- The start point is _____.
- The end point is ____.
- The number line is counting up in _____.
- The missing number is _____ because...

YEAR 4

<u>Key</u> Vocabulary:

tenths column place value greater than 1 equivalent whole forwards/backwards decimal point exchange number line decimal numbers sequence value intervals crossing the whole greater than 1 mixed numbers worth start/end

There is 1 whole and 3 tenths. The number is 1.3

Small Steps:

- I. Tenths as fractions.
- 2. Tenths as decimals.
- 3. Tenths on a place value chart.
- 4. Tenths on a number line.
- 5. Divide a 1-digit number by 10.
- 6. Divide a 2-digit number by 10.
- 7. Hundredths as fractions.
- 8. Hundredths as decimals.
- 9. Hundredths on a place value chart.
- 10. Divide a 1- or 2digit number by 100.

Dora uses a place value chart to work out that $2 \div 10 = 0.2$

Kim knows that to divide a number by 10, she must split it into 10 equal groups.

She uses partitioning to divide 21 by 10

Filip uses a place value chart to find that $34 \div 10 = 3.4$

Jack uses a Gattegno chart to work out that $23 \div 10 = 2.3$

10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

Key Questions:

- What number is represented on the place value chart?
- When divided a number by 10, how many equal parts is the number split into?
- How many tenths are there in 1 whole/2 wholes/3 wholes?
- How can you use counters and a place value chart to show divided a number by 10?
- What is the same and what is different before and after a 1digit number is divided by 10?
- How can you show this 2-digit number on a place value chart/in a part-whole model?
- When divided a number by 10, how many equal parts are you splitting it into?
- How can you use a part-whole model to help you divide a 2 digit number by 10?
- What could a 2 digit number look like once it has been divided by 10?
- What happens to a number when you divide it by 10?

YEAR 4 <u>Key</u> <u>Vocabulary:</u> divide/dividing 1-digit ten decimal number

decimal number 1 decimal place equal parts shared exchanging place value worth move one place right tenths same/different 10 times the size one-tenth the size 2-digit direction splitting

- _____ is 10 times the size of _____.
- _____ is one-tenth the size of _____.
- ____ divided by 10 is equal to _____.

Maths – Decimals

YEAR 4

Small Steps:

- Tenths as fractions.
- Tenths as decimals. 2.
- 3. Tenths on a place value chart.
- Tenths on a number 4. line.
- 5. Divide a 1-digit number by 10.
- Divide a 2-digit 6. number by 10.
- 7. Hundredths as fractions.
- 8. Hundredths as decimals.
- ٩. Hundredths on a place value chart.
- 10. Divide a 1- or 2-digit number by 100.

Do you agree with Tiny?

Explain your answer.

Each part of a hundred square is worth $\frac{1}{100}$

What fraction of each hundred square is shaded?

This Rekenrek is made up of 100 beads.

If the Rekenrek represents 1 whole, what fraction is shown on the left?

What fraction is shown on the right?

Annie makes 0.23 using place value counters.

0.01 0.01 0.01

What numbers do these counters represent?

Key Questions:

- How many hundredths are there in 1 whole?
- How is a hundredth similar to/different from a tenth?
- How can you represent hundredths in a hundred square?
- How many hundredths are equivalent to 1 tenth?
- How can you use base 10 to represent both tents and hundredths?
- How can you partition _____ into tenths and hundredths?
- How is a decimal similar to/different from a fraction?
- how can you write 1 hundredth as a decimal number?
- Are 1/100 and 0.01 the same or different?
- Is _____ greater or smaller than _____?
- How many hundredths are equivalent to 1 tenth?

Picture	Words	Fraction	Decimal
	fifty-six hundredths		
		<u>17</u> 100	

Stem Sentences:

- There are hundredths in tenths.
 - hundredths is equivalent to _____ tenths and _____ hundredths.
 - _ hundredths as a decimal is _____.
- There are hundredths in 1 tenth.
- hundredths can be partitioned into _____ tenths and ____ hundredths.

Key Vocabulary: tenths hundredths whole equal parts number lines place value partition similar/same different hundred square equivalent base 10 decimal number flexible partitioning fractions greater/smaller

Maths – Decimals

Small Steps:

- Tenths as fractions.
- 2. Tenths as decimals.
- Tenths on a place 3. value chart.
- Tenths on a number 4. line.
- 5. Divide a 1-digit number by 10.
- Divide a 2-digit 6. number by 10.
- 7. Hundredths as fractions.
- Hundredths as 8. decimals.
- Hundredths on a place ٩. value chart.
- 10. Divide a 1- or 2-digit number by 100.

Write the decimal numbers shown in the place value charts.

How many ones, tenths and hundredths are there in each number?

chart? ٠ Brett uses place value counters to partition 0.23 0.23 = 0.2 + 0.030.23 = 0.1 + 0.13Use Brett's method to help you partition the numbers in three different ways.

0.34 0.68 0.92 0.51

Use a place value chart and counters to make the numbers.

Complete the sentences to describe each number.

There are _____ ones. **Stem Sentences:** There are _ . tenths. is equal to _____ ones, ____ tenths and hundredths. hundredths. There are The number represented is

eleven hundredths

Key Questions:

- What is a hundredth? ٠
- How many hundredths are equivalent to 1 tenth? ٠
- How many hundredths are equivalent to 1 whole? •
 - Is _____ greater/smaller than ____?
- How can you represent this decimal number on a place value
- How is the hundredths column on a place value chart similar to/different from the column?

Vocabulary: hundredths decimals column place value tenth exchanging counters greater/less than/smaller flexibly partition zero placeholder equivalent similar to/different equal to

ones

YEAR 4

Key

Write <, > or = to complete the statements. 0.01 100 0.05 0.4 0.31

0.11

sometimes true or never true?

Is the statement always true,

A number with 5 in the hundredths column is smaller than a number with 6 in the tenths column.

Explain your answer.

YEAR 4

Key

Small Steps:

- 1. Tenths as fractions.
- 2. Tenths as decimals.
- 3. Tenths on a place value chart.
- 4. Tenths on a number line.
- 5. Divide a 1-digit number by 10.
- 6. Divide a 2-digit number by 10.
- 7. Hundredths as fractions.
- 8. Hundredths as decimals.
- 9. Hundredths on a place value chart.
- 10. Divide a 1- or 2-digit number by 100.

Is the statement true or false?

Explain your answer.

When you divide any whole 2-digit number by 100, there will be a zero in the ones column.

She divides it first by 10, and then by 10 again.

Fill in the missing numbers.

Key Questions:

- What exchanges can you make?
- How can you use a place value chart to show dividing a number by 100?
- How is dividing by 100 similar to/different from dividing by 10?
- What happens to a number when you divide it by 100?
- Does the decimal point ever move?

Write <, > or = to complete the statements.

99 ÷ 100

86 ÷ 100

 $4 \div 10$

24 ÷ 6

• If you divide by 10 twice, what do you notice?

 $100 \div 100$

26 ÷ 10

50 ÷ 100

40 ÷ 100

The answer is 40.05 because the 5 moves two places to the right.

Tiny is working out 45 ÷ 100

Do you agree with Tiny? Explain your answer.

Vocabulary: multiplication division 1-digit 2-digit hundred place value counters exchanges dividing moves two places right similar to/different from decimal point twice split equal parts

- To divide something by _____, split into _____ equal parts.
- When dividing a number by 100, move all the digits _____ places to the _____.

<u>Maths – Measurement - Area</u>

Small Steps:

- 1. What is area?
- 2. Count squares.
- 3. Make shapes.
- 4. Compare areas.

Count the squares to find the area of each shape.

What is the area of each shape?

There are 3 rows altogether: There are 5 squares in a row. 3 rows of 5 squares = 15 squares The area of the shape is 15 squares

Key Questions:

- How can you measure area?
- Which item has the greatest/smallest area?
- Why would you not use sticky notes to find the area of the playground? What could you use instead?
- Why are sticky notes not useful for finding the area of a circle?
- What do you think the area of _____ might be?
- What happens if you use a different unit of measure to find the area?
- What can you do to make sure you do not count a square twice?
- How can you make sure you do not miss a square?
- Does your knowledge of times-tables help you to find the area?
- Can you use arrays to find the area of any shape?
- Which method is easier Sentences:
- What can you do if the squares are not full squares?
- Area is the amount of _____ taken up by a 2-D shape or surface.
- Area can be measured using _____
- There are _____ squares inside the shape. This means that the area of the shape is _____ squares.
- There are _____ squares and _____ half squares inside the shape. This means that the area of the shape is _____ squares.
- There are ____ rows. Each row has ____ squares. There are ____ squares in total.

<u>Key</u> Vocabulary:

area space amount 2-D two-dimensional shape surface counting squares formal calculation half squares accuracy complex shapes arrays properties squares rectangles measure greatest smallest circle times-table method

3.

Maths – Measurement - Area

YEAR 4 Term 2

Key Vocabulary:

area rectilinear shapes squares straight sides right angles corners rectangles overlap odd compare marking noting accuracy complex shapes symbols inequality size order efficient method greater smaller difference

Small Steps: What is area? Count squares. Make shapes. Compare areas.			
	Is the	statement true	e or false?

Add 7 more squares to the shape to make a rectangle.

Is there more than one possible answer?

Which shape has the smaller area?

Draw two shapes to complete the comparison.

There is only one possible

way to make a rectangle with

an area of 12 squares.

Key Questions:

- How many different shapes can you make with four squares?
- How can you work systematically?
- Should you overlap the squares when making your shapes?
- How many of these shapes are rectilinear? Explain why?
- Is it possible to make a rectangle with an odd number of squares?
- Is it possible to make a square with an odd number of squares?
- How can you find out which shape has the greater area?
- How much greater/smaller is the area of the first/second shape?
- What is different about the numbers of squares covered by the two shapes?
- What is the difference is area between the shapes? How can you order the shapes? There are _____ squares inside the shape.
- This means that the area of the shape is _____ squares.
- The area of the shape is _____ squares.
- I can make the shape different by _____.
- The area of shape A is _____ squares and the area of shape B is _____ squares.
- I know shape _____ has a greater area because it has more squares than shape _____.
- The more squares inside a shape, the the area.

<u>Small Steps:</u>

- 1. Measure in kilometres and metres.
- 2. Equivalent lengths (kilometres and metres).
- 3. Perimeter on a grid.
- 4. Perimeter of a rectangle.
- 5. Perimeter of rectilinear shapes.
- 6. Find missing lengths in rectilinear shapes.
- 7. Calculate perimeter of rectilinear shapes.
- 8. Perimeter of regular polygons.
- 9. Perimeter of polygons.

cards into the table to show the appropriate unit

Complete the models.

3 km 300 m		1 km 280 m	
km	300 m	m	1 km

Write <, > or = to compare the lengths.

Use the double number line to complete the number sentences. km = 0 1 2 3 4 5 6 7 8 9 10 m = 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000 h = 1,000 m = km h = m = 4 kmh = 3,000 m = km h = m = 10 km

<u>Key Questions:</u>

- What unit of measurement would you use to measure the length of a ____? Why?
- What unit of measurement would you use to measure ____? Why?
- Which is the greater length, 1km or 1m?
- Which is greater, ____ km and ____ m or ____ km and ____ m ? How do you know?
- Which is greater, _____ km or _____ m? how do you know?
- How many kilometres and metres are there in _____ km _____ m?
- How many metres are there in 1km? So how many metres are there in ____km?
- How can you work out how many metres is equivalent to half a kilometre? What other fractions of a kilometre can you convert to metres?
- What is the same and what is different about converting metres to centimetres and converting kilometres to metres?

Stem Sentences:

__km ___m = ___km + ___m
__km and ___m is greater than ___km and ___m.
__km and ___m is less than ___km and ___m.
There are ___m in 1km, so there are ___m in ___km.
Each kilometre is ___m, so ___km is the same as ___m.
Every 1,000m is ___km, so ___m is the same as ___km.
km and __m is the same as ____km.

YEAR 4

Key Vocabulary: measure kilometres (km) lengths metres centimetres greater distances partition measurements addition bar model part-whole model units less than convert equal thousand related facts ten thousand place value double number lines multiply divide ten hundred equivalent

Small Steps:

- Measure in kilometres and metres.
- 2. Equivalent lengths (kilometres and metres).
- 3. Perimeter on a grid.
- 4. Perimeter of a rectangle.
- 5. Perimeter of rectilinear shapes.
- 6. Find missing lengths in rectilinear shapes.
- 7. Calculate perimeter of rectilinear shapes.
- 8. Perimeter of regular polygons.
- 9. Perimeter of polygons.

Explain your answer.

Is the statement always true,

sometimes true or never true?

When the sides of a rectangle

are all odd numbers, the perimeter is an even number.

Two recilinear shapes are drawn on centimere squared paper.

- Are the perimeters of the shapes the same or different? How do you know?
- Draw a shape with a perimeter that is greater than each of the shapes.

Work out the perimeter of the rectangle.

How many different ways can you work out the perimeter?

<u>Key Questions:</u>

- What does "perimeter" mean?
- What is the length of each square? How do you know?
- What is the length of each side? How do you know?
- What unit is used for the perimeter of your shape?
- How can you make sure you do not include one side twice?
- Which shape has the greater/greatest perimeter? How do you know?
- Can two different shapes have the same perimeter? How do you know? Can you draw an example to support your answer?
- How can you use the length of each side to calculate the perimeter?
- If you know the length and width of a rectangle, do you need to measure/label every side?
- How did you work out the perimeter of the rectangle? How could you have done it a different way?
- How many different ways can you find the perimeter of this rectangle?
- Key Vocabulary: perimeter measuring calculating lengths rectilinear shapes right angles label add compare greater/greatest cm width rectangles double sum

YEAR 4

- Perimeter = ____cm + ____cm + ____cm + ____cm = ____cm.
- The width is _____cm and the length is _____cm.
- The perimeter of the shape is _____cm because....

$$2 \times (__cm + __cm) = __cm$$

YEAR 4

<u>Key</u> Vocabulary:

<u>Small Steps:</u>

- Measure in kilometres and metres.
- Equivalent lengths (kilometres and metres).
- 3. Perimeter on a grid.
- 4. Perimeter of a rectangle.
- 5. Perimeter of rectilinear shapes.
- 6. Find missing lengths in rectilinear shapes.
- 7. Calculate perimeter of rectilinear shapes.
- 8. Perimeter of regular polygons.
- 9. Perimeter of polygons.

Find the missing lengths on the shapes.

- Key Questions: What is a rectilinear shape?
- How many sides does the shape have?
- Are any of the sides equal in length?
- What strategies can you use to find the perimeter?
- How can you be sure you have included all the sides?
- How can you check your answer?
- How many rectilinear shapes can you draw with a perimeter of _____cm?
- What lengths do you know? What lengths do you need to find out?
- What is the total horizontal/vertical length of the shape?
- Which sides add together to give the same total?
- Do you need to add or subtract to find the missing length? How do you know?
- Are you finding a part or a whole?
- What is the missing length on the shape?
- How many missing lengths are there on the shape?

Stem Sentences:

- The calculation I need to do to work out the perimeter is...
- The shapes has _____ sides, so I need to add together _____ lengths to find the perimeter.
 - The perimeter of the shape is ____mm/cm/m.
 - _____ + _____ = _
- The missing side length is _____ because...
- The side measuring _____ and the side measuring ____ are equal to the side measuring _____.
- To workout the unknown length, I need to _____ because...
- There are ______sides, so I need to add together _____ lengths to find the perimeter.

perimeter rectilinear shapes straight lines right angles measure duplication omission lengths width equal addition subtraction operations part-whole model opposite horizontal/vertical calculating equivalent

<u>Small Steps:</u>

- Measure in kilometres and metres.
- 2. Equivalent lengths (kilometres and metres).
- 3. Perimeter on a grid.
- 4. Perimeter of a rectangle.
- 5. Perimeter of rectilinear shapes.
- 6. Find missing lengths in rectilinear shapes.
- 7. Calculate perimeter of rectilinear shapes.
- 8. Perimeter of regular polygons.
- 9. Perimeter of polygons.
- The perimeter of this triangle is 19 cm. Work out the unknown length. 7

The perimeter of a rectangle is 22 cm. The length of the rectangle is 8 cm. Work out the width of the rectangle.

A polygon is regular if all its sides are equal in length and all its angles are equal in size.

Which of these polygons are regular?

Work out the perimeters of the regular polygons.

All the shapes have one line of symmetry.

Work out the perimeters of the shapes.

7 cm

Key Questions:

- What is a polygon?
- How do you know if a polygon is regular?
- If one side is _____cm, what is the length of each of the sides of the shape? How can you find the perimeter?
- Is an equilateral triangle a regular shape?
- Is a rectangle a regular shape?
- If you know the perimeter of a regular polygon, how can you work out the length of each side?
- What is the difference between a regular and an irregular polygon?
- Is the shape irregular? How do you know?
- How can you work out the perimeter of the shape?
- Are any of the sides the same length?
- What is the length of each side?
- How can you work out the perimeter more efficiently?
- If the shape is symmetrical, how can this help you to work out some of the missing side lengths?

Stem Sentences:

- Each side is ____cm.
- There are _____ sides, so the perimeter of the polygon is _____ x ____ cm = ____ cm.
 - $___cm + ___cm + ___cm = 3 x ___cm = ___cm.$
- The shape is regular/irregular because...
- There are _____ sides, so I need to add together _____ lengths to work out the perimeter.
- The c`alculation I need to do to work out the perimeter is...

YEAR 4

<u>Key</u> Vocabulary:

regular polygon equal length angles size repeated addition multiplication facts division perimeter straight equilateral triangle irregular difference symmetrical