Maths - Place Value

YEAR 6

Key Questions:

- Where do the commas go when you write one million in figures?
- If $1,000,000$ is the whole, what could the parts be?
- How else can you partition the number?
- Which columns will change if you add/subtract 10,100 , 1,000 ... to and from the number?
- When do you use placeholders in numbers?

What number is shown in the place value chart?

Thousands				Ones			
H	T	O	H	T	O		
O	O	O	O	O	0		

What will the number be if you add four counters to the:

- tens column
- ten-thousands column
- hundreds column?

Key

 Vocabulary:million place value columns patterns

ones

tens

hundreds
thousands ten thousands hundred thousands Gattegno chart partitioning composing commas
figures whole parts value add subtract placeholders

Stem Sentences:

- The value of the \qquad in \qquad is___.
- The column before/after the ___ column is the ___ column.

Maths - Place Value

Small Steps:

1. Numbers to 1,000,000.
2. Numbers to $10,000,000$.
3. Read and write numbers to $10,000,000$
4. Powers of 10.
5. Number line to 10,000,000.
6. Compare and order any integers.
7. Round any integer.
8. Negative numbers.

What number is represented?

Match the numbers to the representations.

$1,401,312$

$1,041,312$

Key Questions:

- Where do the commas go when writing 7-digit numbers? How does this connect to place value charts?
- How does the place value chart help you to represent large numbers?
- What is the value of each digit in the number?
- Are 7 -digit numbers always greater than $1,000,000$?
- When do you use placeholders in numbers?
- What is the same and what is different about counting in 1,000 s and counting in $1,000,000$ s?
- When a number is written with two commas, what does that tell you about the size of the number?
- What do the numbers before this comma represent?
- How do you write "one million" in words and numerals?
- How do you write "half a million" in words and numerals?
- When do we use "and" when reading or writing a number?

YEAR 6

Key

 Vocabulary:ten million 7-digit commas separators place value Gattegno chart part-whole partition value greater
placeholders same different column numerals

Alex is using a part-whole model to help write the number $4,326,509$ in words.

forty million and three hundred and twenty-six thousand and five hundred and nine

Here is a number shown on a Gattegno chart.

$1,000,000$	$2,000,000$	$3,000,000$	$4,000,000$	$5,000,000$
$6,000,000$	$7,000,000$	$3,000,000$	$9,000,000$	

| $1,000,000$ | $2,000,000$ | $, 000,000$ | $4,00,000$ | $5,000,000$ | 6000,009 | 1000,000 | $8,000,000$ | $9,000,000$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100,000 | 200,000 | 300,000 | 400,000 | 500,000 | 600,000 | 700,000 | 800,000 | 900,000 |

100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000
900,000							
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000
90,000							

10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000

1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000										
100	200	300	400	500	600	700	800	900		100	200	300	400	500	600	700	800	900
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:										
10	20	30	40	50	60	70	80	90										
1	2	3	4	5	6	7	8	9										

Write in words the number that is:

- 80 greater than this number
- 80 less than this number
- 80,000 greater than this number
- 80,000 less than this number.

Stem Sentences:

- The value of the \qquad in \qquad is \qquad
- The column before/after the \qquad column is the \qquad column.
- The digit before the first/second commas is \qquad This part of the number is said/written as \qquad _.
- The digit after the first/second commas is \qquad This part of the number is said/written as \qquad _.
- The whole of the number is said/written as \qquad .

Maths - Place Value

Small Steps:

1. Numbers to 1,000,000.
2. Numbers to 10,000,000.
3. Read and write numbers to 10,000,000.
4. Powers of 10.
5. Number line to 10,000,000.
6. Compare and order any integers.
7. Round any integer.
8. Negative numbers.

What number is shown on the Gattegno chart?

$1,000,000$	$2,000,000$	$3,000,000$	$4,000,000$	$5,000,000$	$6,000,000$	$7,000,000$	$8,000,000$	$9,000,000$
100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000	900,000
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

Use the chart to make the number one hundred times the size of the number shown.
Use the chart to make the number one-hundredth the size of the number shown.

> Annie is thinking of a number.

What number is 1,000 times the size of Annie's number?

Key Questions:

- How can you tell if a number is a power of 10 ?
- Is this number a multiple of a power of 10 ? How can you tell?
- If you move a digit one/two places to the left in a place value chart, how many times greater is the value of the digit?
- How can you use a Gattegno chart to find a number 10 times/one-tenth the size of a given number?

Which calculations have the same answers?

Stem Sentences:

Tommy is thinking of a number.

What number is 100 less than Tommy's number? of is 10 times the size of \qquad , so \qquad is one-tenth the size

- \qquad is 100 times the size of \qquad , so \qquad is one-hundredth the size of \qquad -
- Multiplying/dividing by 10 twice/three times is the same as multiplying/dividing by \qquad _.

YEAR 6

Key

Vocabulary:
multiplying dividing
ten
hundred thousand place value integers
10/100/1000
times the size one-tenth
one-hundredth one-thousandth increase decrease power of 10 columns adjacent multiple digit greater value Gattegno chart

Maths - Place Value

Small Steps:

1. Numbers to 1,000,000.
2. Numbers to 10,000,000.
3. Read and write numbers to 10,000,000.
4. Powers of 10.
5. Number line to 10,000,000.
6. Compare and order any integers.
7. Round any integer.
8. Negative numbers.

Tiny says A is pointing to $3,050,000$
Explain the mistake that Tiny has made.

Key Questions:

- What are the values of the start and the end of the number line?
- What is each interval worth?
- How many small divisions are there between each of the large divisions on the number line? What is each small interval worth?
- What is the same and what is different about a number line that goes from 0 to 10,000 and a number line that goes from 0 to $10,000,000$?
- What is the midpoint between \qquad and \qquad ?
- What is each interval worth if one million is split into two/four/five/ten equal parts?

Here is a number line.

Draw arrows to show the positions of these numbers on the number line.

```
1,500,000
```

five and a half million

6,200,000
8,950,000

Stem Sentences:

- The previous multiple of \qquad is \qquad -
- The next multiple of \qquad is \qquad -.

YEAR 6

Key

 Vocabulary:ten thousand million
number lines equal midpoints divisions value interval worth same different multiple

Maths - Place Value

Small Steps:

1. Numbers to 1,000,000.
2. Numbers to $10,000,000$.
3. Read and write numbers to 10,000,000.
4. Powers of 10.
5. Number line to 10,000,000.
6. Compare and order any integers.
7. Round any integer.
8. Negative numbers.

Key Questions:

- What is the value of each digit in the number?
- Which digit in each number has the greatest value? What is the value of these digits?
- When comparing two numbers with the same number of digits, what do you look at first?
- What is the difference between ascending and descending order?
- What is different about comparing numbers with the same number of digits and comparing numbers with different number of digits.

Write $<,>$ or $=$ to make the statements correct.

Here are three numbers ordered from the greatest to the smallest, but one number has been covered up.

Stem Sentences:

- The value of the first digit in the number \qquad is \qquad .
\qquad is less than/greater than \qquad _.

$$
\begin{array}{llll}
6,503,102 & 651,300 & 6,550,021 & 690,210
\end{array}
$$

Which calculation has the greater answer?

$$
600,000+50,000+7,000
$$

$$
400,000+256,000
$$

YEAR 6

Key

Vocabulary:
compare order integers million ten million digits place value symbols greater than less than value difference ascending descending

Maths - Place Value

Small Steps:

1. Numbers to 1,000,000.
2. Numbers to 10,000,000.
3. Read and write numbers to 10,000,000.
4. Powers of 10.
5. Number line to 10,000,000.
6. Compare and order any integers.
7. Round any integer.
8. Negative numbers. What is the smallest possible value of Dexter's number?

Draw an arrow to show the approximate position of $8,640,000$ on the number line.
Round $8,640,000$ to the nearest million.

Round the number in the place value chart to:

- the nearest ten thousand
- the nearest hundred thousand
- the nearest million.

Key Questions:

- Which multiples of $1,000,000$ does the number lie between?
- How can you represent the rounding of this number on a number line?
- Which division on the number line is the number closer to?
- What is the number rounded to the nearest million?
- What is the most appropriate way of rounding this number?
- Which place value column should you look at to round the number to the nearest ten/hundred/thousand/ten thousand/hundred thousand/million?

The population of London is $8,982,604$

Between which two multiples of $1,000,000$ does this number lie? Round the population of London to the nearest million.

YEAR 6

Key

Vocabulary:
rounding million
power of 10
hundred thousand previous next multiples midpoints number lines closer to halfway greater division
place value column nearest

Stem Sentences:

- The previous multiple of \qquad is \qquad _.
- The next multiple of \qquad is \qquad C is is

Maths - Place Value

YEAR 6

Small Steps:

1. Numbers to 1,000,000.
2. Numbers to $10,000,000$.
3. Read and write numbers to 10,000,000.
4. Powers of 10.
5. Number line to 10,000,000.
6. Compare and order any integers.
7. Round any integer.
8. Negative numbers.

Key Questions:

- What is the same and what is different about the numbers 2 and -2 (negative two)?
- How far is -5 from zero? How far is -5 from 1?
- Which is the greater temperature, -1 degrees or -2 degrees?
- How do you find the difference between two negative numbers?
- How do you find the difference between a positive number and a negative number?
- What is the same and what is different about counting forwards/backwards along a number line beyond zer?

Use the number line to answer the questions.

What is 6 less than 4 ?
What is 5 more than - 2 ?
What is the difference between 3 and -3?

Key

Vocabulary:
negative numbers number line zero
horizontal/vertical
temperatures
thermometer adding
subtracting positive negative difference calculating intervals same different degrees forwards backwards greater than less than

Stem Sentences:

- To find the number \qquad greater/less than \qquad I count \qquad on the number line.
\qquad is \qquad away from zero.

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4-digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Find the answers to the calculations.

Which calculations would you work out mentally, and which would you work out using the column method?

Work out the answers to the calculations.

> Find the missing digits.

The perimeter of the triangle is equal to the perimeter of the rectangle. Work out the unknown length of the triangle.

Key Questions:

- What is the greatest digit you can have in a place value column?
- How do you exchange when adding?
- How do you exchange when subtracting?
- Which columns are affected by the exchange?
- How do you know whether to add or subtract the numbers?
- How can you check your answer to the calculation?

Find the difference between A and B .

\qquad place

- The

Stem Sentences:

- In column addition/subtraction, we start with the value column.
\qquad is in the \qquad column. It represents \qquad -

\qquad - column. It represents路

YEAR 6

Vocabulary:

add

subtract integers
formal column method mental strategy place value multi-step operations methods exchanges greatest column

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4-digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Key Questions:

- What are the factors of \qquad ?
- What factors do \qquad and \qquad have in common?
- How can you easily tell if $2 / 5 / 10$ is a factor of number?
- If you know one factor of a number, how can you use it to find another factor of the number?
- Is 1 a factor of all numbers?
- How can you work systematically to find all the factors of a number?

YEAR 6

Key

Vocabulary:

factors common factors arrays times-tables rules of divisibility pairs
largest
HCF
highest common factor systematically

Here is a table for sorting numbers.
Write one number in each box.

	Factor of 6	Not a factor of 6
Factor of 9		
Not a factor of 9		

Decide if each statement is true or false.

5 is a factor of both 95 and 75 3 is a common factor of 45 and 54 4 is not a common factor of 56 and 80

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4 -digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Here is a hundred square.

Shade the multiples of 6
Circle the multiples of 5
What common multiples of 5 and 6 do you find?
Use these numbers to find other common multiples of 5 and 6

Find the first three common multiples of each pair of numbers.

| 4 and 5 and 6 and 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Here is a table for sorting numbers.
Write one number in each box.

	Multiple of 8	Not a multiple of 8
Multiple of 5		
Not a multiple of 5		

Key Questions:

- How do you find the multiples of a number?
- What multiples do \qquad and \qquad have in common?
- What is the difference between a multiple and a factor?
- Can a number be both a factor and a multiple of another number?
- How can you tell is a number is a multiple of another number?
- When do numbers have common multiples that are less than their product?

Write the numbers in the sorting diagram.

$$
\begin{array}{lllllllllll}
12 & 18 & 40 & 6 & 48 & 24 & 16 & 42 & 56 & 54 & 30
\end{array}
$$

Stem Sentences:

- The first multiple of a number is always__.
- ___ is a multiple of \qquad because \qquad x \qquad $=$ \qquad
- ___ is a common multiple of \qquad and \qquad _.

YEAR 6

Vocabulary:

multiples
times-tables common multiples
factors arrays rules of divisibility systematically product LCM
lowest common multiple difference

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4-digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Which of the numbers are divisible by 2?

Which of the numbers are also divisible by 4? How can you tell?

Use the digit sums to decide which numbers are divisible by 3 and which are also divisible by 9

Find a number that matches each description.

Key Questions:

- How does the ones digit help you to decide if a number is divisible by 2,5 or 10 ?
- How can you use the rule for divisibility by 2 to find out if a number is divisible by 4/8?
- What two other numbers must a number be divisible by if the number is divisible by 6/12?
- How can you tell if a 2-digit number is divisible by 11 ?
- Which divisibility rules are based on the sum of the digits of a number?

	Is the number divisible by ...?				
	3	4	6	9	11
87					
96					
99					
216					
702					

Stem Sentences:

Scott is packing cakes into boxes.

He puts an equal number of cakes into each box with no cakes left over.

He has 1,032 cakes to pack.
How many cakes can go in each box?

- If a number is divisible by \qquad and \qquad then the number must also be divisible by \qquad .
- If the sum of the digits is divisible by \qquad , then the number is divisible by \qquad -.
- A number is divisible by ___ if its ones digit is \qquad .
\qquad .

YEAR 6

Key Vocabulary:

rules of divisibility patterns times-tables

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4-digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Which of these numbers are prime and which are composite?

Write the numbers in the sorting diagram.
$\begin{array}{lllllll}10 & 13 & 2 & 12 & 11 & 6 & 7\end{array}$

Find the prime factors of the numbers.

Key Questions:

- What is a prime number?
- What is a composite number?
- How many factors does a prime number have?
- Why is 1 not a prime number?
- How can you find the prime factors of a number?
- Are the multiples of prime numbers also prime?

Stem Sentences:

- The factors of \qquad and \qquad The prime factors of \qquad are \qquad -
Write the three prime numbers that multiply to make 105
\qquad \times $-\times$ $=105$

YEAR 6

Key

Vocabulary:

prime numbers
composite numbers
factors
prime factors
square numbers
cube numbers
\qquad

- ___ is prime because it has exactly \qquad factors.
____ is a composite number because \qquad $=$ \qquad

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4 -digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

The table shows some square numbers and cube numbers. Complete the table and describe any patterns and connections you notice. The first row has been done for you.

1^{2}	1×1	1	1^{3}	$1 \times 1 \times 1$	1
					8
	3×3		3^{3}		27
	4×4			$4 \times 4 \times 4$	
		25	5^{3}		
				$6 \times 6 \times 6$	
8^{2}					

Write $>_{,}<$or $=$to make the statements correct.

Here are some number cards.

Which numbers are square?
Which numbers are cube?
Which numbers are both square and cube? Which numbers are prime?

Key Questions:

- How do you square a number?
- How do you cube a number?
- Are the squares of even/odd numbers even or odd?
- Are the cubes of even/odd numbers even or odd?
- Can a number be both a square number and a cube number?
- How can you use a square number to help find a cube number?
 multiple prime multiply
square numbers cube numbers notation volume formula factors 5. 6 or 9 , but cube numbers can end in any number.

YEAR 6

Key

 Vocabulary:

Do you agree with Tiny?

Stem Sentences:

- To square a number, you multiply the number by \qquad and then
- To cube a number, you multiply the number by \qquad by \qquad is a square /cube number because...

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4-digit
number by a 2-digit 2,465 people buy tickets for a festival. number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.

Each ticket costs $£ 48$
How much is spent altogether on the tickets?

Work out the multiplications.

Use your answers to work out these multiplications.
 remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Work out the multiplications.

12. Long division with Re from known

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4-digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Complete the short divisions

Here is $8,524 \div 4$ shown using place value counters and short division.

1,480 pencils are grouped into packets of 5 How many groups of 5 pencils are there?

Esther is working out $840 \div 4$
She knows $840 \div 2=420$

How can Esther use this fact to help find $840 \div 4$?

Key Questions:

- How many groups of 4 __ are there in $40 / 400 / 4000$?
- How many groups of 4 \qquad are there in $80 / 800 / 8000$?
- What do you do with any remaining ones at the end of a division?
- If you cannot make a group in a column, what do you do?
- What does the remainder mean in this questions?
- What does the word factor mean?
- What are the factors of the number you are dividing by?
- What numbers did you find it easy to divide by?
- How can you check your answer?
- Which factor are you going to divide by first/second? Why?

Stem Sentences:

- ___ thousands divided by ___ is equal to \qquad thousands with a remainder of \qquad . The remainder is exchanged into \qquad hundreds.
- ___h hundreds divided by ___ is equal to \qquad hundreds with depeated division remainder of \qquad Th
\qquad
- Dividing by 4 is the same as dividing by \qquad and \qquad tens. again.
- The factor pairs of \qquad are \qquad .
\qquad and then divide the answer by
\qquad , I can first divide by -
\qquad x \qquad so to divide by \qquad I can divide by
\qquad
short division divide 4-digit
single-digit
long division integer remainder multiples times-table groups of column thousands equal to exchanged hundreds
tens factors multiplication halve

YEAR 6

Key Vocabulary:

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4-digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Filip uses multiples to help divide 372 by 15

$861 \div 41$

Key Questions:

- How can you use multiples to divide by a 2-digit number?
- Why do we subtract as we go along?
- What does the arrow represent in the long division?
- Can this division be done using factors instead? Why or why not?
- What is the first step when performing a long division?
- Why do we subtract as we go along?
- In a long division, what happens are the subtraction if you cannot divide exactly?
- What is the first step when performing a long division?
- What is the most useful way of portioning the number?
- Would you use short division or long division? Why?
- If you double a number and then double it again, what is the overall effect on the original number?
- What factor pairs have a product of ___ ? How does this help you to divide by \qquad ? Which factor pair is easiest to use?

Stem Sentences:

 hundreds divided by ___ is equal to ___ hundreds with a remainder of \qquad —. ess than estimation subtract strategy solution partitioning double quotient
Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4-digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Key Questions:

The total mass of apples in a box is 25 kg .
The total mass of oranges in a box is 24 kg .

- There are 32 boxes of apples and 25 boxes of oranges in a supermarket.
What is the total mass of apples and oranges?
- A customer orders 300 kg of apples and 600 kg of oranges.

How many boxes of fruit will the customer receive?

At a parade, there are 25 rows of people with 8 people in each row.
Each person holds 2 flags.
How many flags are needed for the parade?

The area of a rectangular tile is $40 \mathrm{~cm}^{2}$
The width of the tile is 5 cm .

A strip of tiles is made by laying tiles end-to-end.

How long is a strip with 15 tiles?
How many tiles are needed to make a strip 280 cm long? How many tiles are needed to make a strip 4 m long?

Stem Sentences:

- First, I need to work out \qquad -
- The calculation I need to do it \qquad
- Next, I need to work out \qquad
\qquad
\qquad
- The calculation I need to do it .
- What can you work out first?
- Is this step an addition, a subtraction, a multiplication or a division? How can you tell?
- Could you draw a diagram to represent the problem?
- Can you work out the answer to this part of the problem mentally or do you need another method?
- What can you do next?

Five boxes of toy trains cost $£ 120$
Each box contains 6 trains.
How much does each train cost?

YEAR 6

Vocabulary:

problems
real-life context calculation operations order
informal/formal number line add subtract multiply divide

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4-digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Maths - Addition, Subtraction, Multiplication and Division

Key Questions:

- Does it make a difference if you perform the operations in a different order?
- What do brackets in a calculation mean? What would happen if you did not use the brackets?
- Which operation has greater priority, addition or multiplication?
- How many pairs of operations do you know that have equal priority?
- How do you find the square of a number?

Match the counters to the calculations.

YEAR 6

Key

Vocabulary:
order priority operations calculation brackets multiplication division equal additions subtractions difference square number greater

Dani has 7 bags with 5 sweets in each bag.
She adds one more sweet to each bag.
Which calculation shows how many sweets there are in total?

$$
7 \times(5+1)
$$

\qquad $7 \times 5+1$ \square

Here are some number cards.

Pick one large number from the top row.

Pick five smaller numbers from the bottom row.
Use a calculator or computer to generate a 3-digit target number.
Use your numbers, the four operations and brackets to find a number as close as possible to the target number.

Stem Sentences:

\qquad has greater priority than \qquad , so the first part of the
\qquad
\qquad calculation I need to do it ___.都

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4 -digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

Key Questions:

- Should you round the number to the nearest 10/100/1,000? Why?
- Are any of the number multiples of powers of 10 ? How does this help you to add/subtract/multiply/divide the numbers?
- What number is (for example) 99 close to? How does this help you with the calculation? What adjustment do you need to make?
- How would portioning/reordering the number(s) help?
- Why are estimates of the answers of calculations useful?

Approximately how much further does he have to drive?

Work out the answers to the calculations.

Mo wants to buy a T-shirt for $£ 9.99$,
a pair of socks for $£ 2.49$ and a cap for $£ 8.99$
He has $£ 22$ in his wallet.

How can he quickly check whether he has enough money?

A textbook costs $£ 19.99$
Approximately how many textbooks can be bought for $£ 300$?

Stem Sentences:

- The previous multiple of \qquad is \qquad .
- The next multiple of \qquad is \qquad ____ is is ____
\qquad

Key

Vocabulary:

mental strategies estimation calculation rounding simplifying nearest multiples powers of 10 add subtract multiply divide close to adjustment partitioning reordering previous next

Maths - Addition, Subtraction, Multiplication and Division

Small Steps:

1. Add and subtract integers.
2. Common factors.
3. Common multiples.
4. Rules of divisibility.
5. Primes to 100 .
6. Square and cube numbers.
7. Multiply up to a 4-digit number by a 2-digit number.
8. Solve problems with multiplication.
9. Short division.
10. Division using factors.
11. Introduction to long division.
12. Long division with remainders.
13. Solve problems with division.
14. Solve multi-step problems.
15. Order of operations.
16. Mental calculations and estimation.
17. Reason from known facts.

- Write four facts shown by each bar model.

503						
168	335					
222						
37	37					

- Use the fact that $327+482=809$ to work out the answers to the calculations.

- Use the fact that $11,832 \div 29=408$ to work out the answers to the calculations.

Key Questions:

- What is an inverse operation?
- How can you use an inverse operation to find related facts?
- What is the same and what is different about the numbers in the given calculation and the numbers in the calculation you want to work out?
- How will the answer change if you increase/decrease/multiply/divide one/both of the numbers by ___?

Stem Sentences:

- If I add/subtract \qquad to/from one of the numbers in the calculation, then the answer will change by \qquad
- If I multiply/divide \qquad one of the numbers in the calculation by \qquad then the answer will change by

YEAR 6

Key Vocabulary:

facts
place value
inverse operations
commutativity
mental strategies
area model
number line links calculations multiplying dividing powers of 10 doubling halving
connections integers decimal
same
different
increase decrease

Maths - Fractions A

Small Steps:

1. Equivalent fractions and simplifying.
2. Equivalent fractions on a number line.
3. Compare and order (denominator).
4. Compare and order (numerator).
5. Add and subtract simple fractions.
6. Add and subtract any two fractions.
7. Add mixed numbers.
8. Subtract mixed numbers.
9. Multi-step problems.

Use Mo's method to simplify the mixed numbers.

- Jack uses multiplication to find equivalent fractions.

Use Jack's method to complete the equivalent fractions.

- Use division to write the fractions in their simplest form.

Count in fifteenths on this number line and then write the fractions in their simplest form

What patterns can you see?

Key Questions:

- What are the common factors of ___ and \qquad ?
- Why is it better to identify the greatest possible number that both the numerator and denominator can be divided by?
- Does the simplified fraction have the same value?
- Do the numerator and denominator have any more common factors?
- How can you tell if a fraction is in its simplest form?
- When simplifying a mixed number, why does the integer not change?
- How many intervals are there on a number line? What is each interval worth?
- What equivalent fractions have you found?
- Is this fraction in its simplest form? How do you know?
- Can you divide the number line into more intervals to place the fractions more accurately?
- How will you place one sixteenth on a number like that is counting in eighths?
- Which fraction was the easiest/hardest to label? Why?

Stem Sentences:

- Both the numerator and the denominator can be divided by \qquad
- To simplify the fraction, I will divide the numerator and denominator by \qquad .
- ___ in its simplest from is \qquad -
- From my number line, I can see that \qquad is equivalent to \qquad _.
- When I count in eighths, I can change \qquad into \qquad because they are equivalent.

Maths - Fractions A

Small Steps:

1. Equivalent fractions and simplifying.
2. Equivalent fractions on o number line.
3. Compare and order (denominator).
4. Compare and order (numerator).
5. Add and subtract simple fractions.
6. Add and subtract any two fractions.
7. Add mixed numbers.
8. Subtract mixed numbers.
9. Multi-step problems.

Use the bar models to compare $\frac{3}{4}$ and $\frac{2}{5}$

Write the fractions in descending order.

Write $<,>$ or $=$ to compare the fractions

The bar models show $\frac{3}{10}$ and $\frac{2}{5}$

Which fraction is greater? How do you know?

Write $<,>$ or $=$ to compare the fractions.

Whitney is comparing $\frac{2}{5}$ and $\frac{6}{13}$ using a common numerator.

$$
\frac{2}{5}=\frac{6}{15} \quad \frac{6}{15}<\frac{6}{13} \text { so } \frac{2}{5}<\frac{6}{13}
$$

Key Questions:

- How could you use a number line or bar model to help you compare the fractions?
- If the denominators are the same? How do you compare the fractions?
- Is one denominator a multiple of the other?
- If one denominator is not a multiple of the other, what do you need to do to be able to compare the fractions?
- How is comparing mixed numbers different from comparing proper fractions? How is it similar?
- How can you compare the fractions shown in the bar model?
- Do you need to change one or both numerators? Why?
- If this fraction closer to 0 or 1 ?
- Is this fraction greater or less than $1 / 2$?
- Is it more efficient to find a common numerator or a common denominator?

Stem Sentences:

- I am comparing \qquad and \qquad I can use \qquad as the common denominator.
- If one denominator is not a multiple of the other, I need to find a \qquad _.
- When the numerators are the same, the \qquad the denominator, the \qquad the fraction.
- I know \qquad is greater than $1 / 2$ because...
- I know \qquad is closer to 1 than \qquad because

YEAR 6

Key

Vocabulary:
compare order
denominator
equivalent
common denominator
bar model multiple
common multiple
number line same different mixed numbers proper fractions similar numerator unit fractions non-unit fractions greater smaller greater than less than - because

Maths - Fractions A

Small Steps:

1. Equivalent fractions and simplifying.
2. Equivalent fractions on a number line.
3. Compare and order (denominator).
4. Compare and order (numerator).
5. Add and subtract simple fractions.
6. Add and subtract any two fractions.
7. Add mixed numbers.
8. Subtract mixed numbers.
9. Multi-step problems.

Use the bar model to help add the fractions.

Work out the additions.

$$
=\frac{1}{3}+\frac{1}{12} \quad-\frac{1}{3}+\frac{7}{12} \quad-\frac{2}{3}+\frac{1}{12}
$$

Use the bar model to work out the subtraction. | \vdots | \vdots | \vdots | $\frac{2}{3}-\frac{1}{9}$ |
| :--- | :--- | :--- | :--- |

Work out the subtractions.
$-\frac{2}{3}-\frac{2}{9} \quad-\frac{1}{3}-\frac{2}{9}$
$-\frac{2}{3}-\frac{5}{9}$
Complete the part-whole models.

Key Questions:

- Do the fractions have the same denominator?
- When are two fractions equivalent?
- How can you find a common denominator?
- How many of the fractions do you need to convert?
- Now the denominators are the same, how do you add/subtract the fractions?
- Do the fractions have the same denominator?
- What is the first common multiple of ___ and \qquad ?
- How many of the fractions do you need to convert?
- How do you know if your answer is in its simplest form?
- Do you need to convert your answer to a mixed number? Why or why not?

YEAR 6

Key

Vocabulary:
adding subtracting denominator numerators equivalent multiple bar model common multiple improper mixed number common denominator convert
multiply calculation
greater
simplify
LCM
lowest common multiple

Stem Sentences:

- Fractions must have the same ___ before they can be added or subtracted.

The jumps on the number line are equal.
What is the missing value on the number line?

Fill in the boxes to make the calculation correct

- The denominator has been multiplied by \qquad so to make the equivalent fraction, multiply the numerator by \qquad —.
- When fractions have the same \qquad , to add or subtract them I just \qquad the \qquad -.
- The lowest common multiple of \qquad and \qquad is \qquad
- To add/subtract the fractions, I could convert them both to
- When fractions have the same \qquad to add or subtract them you just \qquad the \qquad

Maths - Fractions A

Small Steps:

1. Equivalent fractions and simplifying.
2. Equivalent fractions on a number line.
3. Compare and order (denominator).
4. Compare and order (numerator).
5. Add and subtract simple fractions.
6. Add and subtract any two fractions.
7. Add mixed numbers.
8. Subtract mixed numbers.
9. Multi-step problems.

The numbers in the row and column add up to make the totals shown.

 Find the missing values

Aisha uses a bar model to help work out $1 \frac{3}{5}+2 \frac{1}{5}=3 \frac{4}{5}$

Whose method do you prefer? Explain your answer.

Tom uses bar models to help work out $2 \frac{3}{4}-1 \frac{3}{8}$

Complete the part-whole models.

Key Questions:

- How can you partition the mixed numbers?
- How can the addition/subtraction be rewritten to make it easier?
- In this question, it is easier to deal with wholes and fractions or to use improper fractions? Why?
- How do you convert a mixed number into an improper fraction?
- Are there any improper fractions in the answer?
- What can you do about this?

Stem Sentences:

- Mixed numbers can be partitioned into a \qquad part and a
\qquad part.

YEAR 6

Key

Vocabulary:
mixed numbers additions wholes
fractional parts efficient converting improper
denominator numerators partition greater than subtract same different exchange number line bar model equal

- A fraction is improper when the \qquad is greater than the
is made up of \qquad wholes and \qquad -.
- This calculation will/will not cross the whole because...
- A fraction is equal to one whole when the \qquad is equal to the \qquad .
- The mixed number can be partitioned into \qquad and \qquad _-.
- \qquad can be written as \qquad wholes and \qquad __.

Maths - Fractions A

Small Steps:

1. Equivalent fractions and simplifying.
2. Equivalent fractions on a number line.
3. Compare and order (denominator).
4. Compare and order (numerator).
5. Add and subtract simple fractions.
6. Add and subtract any two fractions.
7. Add mixed numbers.
8. Subtract mixed numbers.
9. Multi-step problems.

Children in Class 6 were asked how they travel to school.
The results of the survey are shown in the pie chart.

What fraction of children do not get the bus to school?

Here is a vegetable patch.
$\frac{1}{5}$ of the patch is for carrots and $\frac{3}{8}$ of the patch is for cabbages. What fraction of the patch is for potatoes?

Key Questions:

- What can you work out first?
- What do you need to know to work out the answer?
- Can you draw a diagram to represent the problem?
- Can you work out the answer to this part of the problem mentally or do you need another method?
- What can you do next?

Annie and Mo are going on a trip.

Complete the calculation.

How much more of the patch is for the potatoes than for the cabbages? Give all your answers in their simplest form.

What is the value of A ?

Stem Sentences:

What is the total mass of the suitcases?
There is a weight allowance of 32 kg per suitcase.
How much below the weight allowance are Annie and Mo's suitcases?

YEAR 6

Key

Vocabulary:
solving problems real-life context calculation operations order perform method simplest form convert improper
mixed numbers mentally
add subtract

Maths - Fractions B

Small Steps:

1. Multiply fractions by integers.
2. Multiply fractions by fractions.
3. Divide a fraction by an integer.
4. Divide any fraction by an integer.
5. Mixed questions with fractions.
6. Fraction of an amount.
7. Fraction of an amount find the whole.

Huan works out $4 \times \frac{7}{8}$

$$
4 \times \frac{7}{8}=\frac{28}{8}=3 \frac{4}{8}
$$

How can you improve Huan's answer?

Use the diagrams to work out the multiplications.

$$
\text { Eva partitions } 2 \frac{3}{5} \text { to help her work out } 2 \frac{3}{5} \times 3
$$

$6+1 \frac{4}{5}=7 \frac{4}{5}$
There are 12 children in a class,
The teacher has 4 litres of orange juice.

[^0] How much orange juice will be left over?

Key Questions:

- How is multiplying fractions by integers similar to addition of fractions? How is it different?
- What happens to the denominator when you multiply a fraction by an integer?
- Do you find it easier to partition the mixed number first or to convert it to an improper fraction?
- Is $2 / 3 \times 7$ equal to $7 \times 2 / 3$? Why?

$$
\text { Tiny is working out } 4 \times 3 \frac{2}{5}
$$

YEAR 6

Key

Vocabulary:
multiplying integers
repeated addition adding subtracting denominator numerator
mixed numbers partition convert improper similar different equal to

Is Tiny correct?

Explain your reasoning.

Stem Sentences:

- To multiply a fraction by an integer, I need to multiply the numerator by
- To multiply a mixed number by an integer, I can partition it into \qquad and
\qquad and then multiply them both by the integer.
- To multiply a mixed number by an integer, I can convert the mixed number to an \qquad and then...

Maths - Fractions B

Small Steps:

1. Multiply fractions by integers.
2. Multiply fractions by fractions.
3. Divide a fraction by an integer.
4. Divide any fraction by an integer.
5. Mixed questions with fractions.
6. Fraction of an amount.
7. Fraction of an amount find the whole.

Work out the missing numbers.

$$
\begin{aligned}
& \frac{1}{2} \times \frac{1}{\square}=\frac{1}{16} \\
& \frac{\square}{6} \times \frac{3}{5}=\frac{21}{30} \\
& \frac{3}{\square} \times \frac{4}{5}=\frac{3}{5}
\end{aligned}
$$

Alex is using a piece of paper to work out $\frac{1}{2} \times \frac{1}{3}$ First, she folds the piece of paper in half.
Then she folds the half into thirds.
Alex shades the fraction that she has created.

Use Alex's method to work out the multiplications.

Dani is using a diagram to work out $\frac{2}{3} \times \frac{4}{5}$

Explain why the diagram shows $\frac{2}{3} \times \frac{4}{5}=\frac{8}{15}$ Use similar diagrams to work out $\frac{2}{3} \times \frac{2}{5}$ and $\frac{2}{3} \times \frac{3}{5}$ Find the missing numbers.

Key Questions:

- How can you show the calculation as a diagram?
- What is the same and what is different about "half of" a number " $1 / 2 \mathrm{x}$ " a number?
- When you multiply two fractions, is the product greater than or smaller than each of the fractions? Why?
- Why are all of your answers less than 1?

Aisha uses this diagram to work out the product of two fractions.

What fractions has Aisha multiplied? What is the answer?

Stem Sentences:

- To show \qquad , I have split my diagram into \qquad equal sections.
- To find the product, I need to...
- When multiplying a pair of fractions, I need to multiply the \qquad and multiply the \qquad _.

Maths - Fractions B

Small Steps:

1. Multiply fractions by integers.
2. Multiply fractions by fractions.
3. Divide a fraction by an integer.
4. Divide any fraction by an integer.
5. Mixed questions with fractions.
6. Fraction of an amount.
7. Fraction of an amount find the whole.
Is the statement true or false?

$$
\frac{3}{5} \div 4=\frac{3}{4} \div 5
$$

Explain your answer.

Find the missing fractions and integers.

$$
\begin{aligned}
& -\div 4=\frac{7}{36} \\
& \frac{3}{20} \div-=\frac{3}{80} \\
& \square \div-=\frac{2}{5}
\end{aligned}
$$

Filip has $\frac{2}{5}$ of a chocolate bar.
He shares it with his friend.
What fraction of the chocolate bar do they each get?

Use the diagrams to help you work out the divisions.

Key Questions:

- How could you represent the fraction?
- How could you split the fraction into \qquad equal parts?
- What do you notice about the numerators in the question and the answer?
- What do you notice about the denominators in the question and the answer?
- What changes and what stays the same?
- How can you show the division as a bar model?
- What is each part of the fraction worth?
- How is $1 / 3 \div 2$ similar to $1 / 3 \times 1 / 2$?
- What fractions are equivalent to ___?
- Why does finding an equivalent fraction help you to divide a fraction by an integer?

Key

 Vocabulary:dividing
Integers
numerator
multiple
bar model
number sentence representation denominator

same

shared
equal
split
changes division

- What multiplication can you use to work out \qquad \div
\qquad ?

Stem Sentences:

- If you divide \qquad into equal groups, then
\qquad \div \qquad $=$ \qquad .
\qquad ones, soones divided by \qquad is equal to \qquad eighths divided by \qquad is equal to \qquad eighths.
- The bar is split into \qquad by \qquad , so I must split each part

$$
\begin{aligned}
& \text { Work out the missing numbers. } \\
& >\frac{1}{3} \div 2=\frac{3}{4} \times \frac{\square}{\square}=\frac{\square}{\square} \quad>\frac{3}{5} \div 2=\frac{3}{5} \times \frac{\square}{\square}=\frac{\square}{\square}
\end{aligned}
$$

- I am dividing each \qquad y into \qquad equal parts.
is equivalent to \qquad so \qquad \div \qquad is equal to \qquad groups equivalent multiplying unit fraction
pattern
\qquad

Maths - Fractions B

Small Steps:

1. Multiply fractions by integers.
2. Multiply fractions by fractions.
3. Divide a fraction by an integer.
4. Divide any fraction by an integer.
5. Mixed questions with fractions.
6. Fraction of an amount.
7. Fraction of an amount find the whole.

Match the bar models to the correct problems.

A piece of ribbon
is 4 m long. Tom cuts $\frac{3}{5}$ off.
How much ribbon is left?

Nijah has 4 pieces of ribbon.
Each piece is $\frac{3}{5} \mathrm{~m}$ long.
How much ribbon does
Nijah have altogether?

A piece of ribbon is
$\frac{3}{5} \mathrm{~m}$ long. Brett cuts it
into 4 equal parts.
How long is each part?

Work out the answer to each problem.

Key Questions:

- Do you need to find the whole or a part? Where can you show this on the bar model?
- What type of calculation do you need to do? How can you tell?
- Does it matter in which order you perform the calculations? Why/why not?
- Which operation should you perform first/second?
- What happens when you insert brackets into the calculation?

> Using each digit once only, find as many solutions to the calculation that are between 1 and 2 as you can.

YEAR 6

Key

four operations bar model
word problems multi-step add subtract multiply divide whole part calculation order perform brackets

Square A and rectangle B have the same area. Find the difference between their perimeters.

Find the difference between $\frac{3}{4} \times 3$ and $\frac{3}{4}+3$

Add two sets of brackets to make the calculation correct.

$$
\frac{1}{2}+\frac{1}{4} \times 8+\frac{1}{6} \div 2+1=6 \frac{1}{18}
$$

Find the total length of the bar Is there more than one way to find the answer?

Maths - Fractions B

Small Steps:

1. Multiply fractions by integers.
2. Multiply fractions by fractions.
3. Divide a fraction by an integer.
4. Divide any fraction by an integer.
5. Mixed questions with fractions.
6. Fraction of an amount.
7. Fraction of an amount find the whole.

Fill in the missing numbers.

$420 \mathrm{~g}=\frac{\square}{12}$ of 720 g

Use the bar model to find the missing numbers.
160

- $\frac{1}{8}$ of $160=_$- $\frac{5}{8}$ of $160=$ ___ of $160=60$

Work out the fractions of the amounts.

Complete the calculations.
$\frac{1}{4}$ of $20=$
$\frac{1}{4}$ of $\quad=20$

20

Work out the missing wholes.

Key Questions:

- How do multiplication and division help us when finding fractions of an amount?
- What does dividing the whole amount by the denominator work out?
- How are the parts and wholes represented in a fraction?
- What bar model could you draw to represent the calculation?
- What is the difference between a unit fraction and a nonunit fraction?
- How many equal parts are there altogether?
- How many equal parts do you know the value of?
- What is the value of each equal part?
- How can you find the whole?
- Should the whole be greater than or less than the value you are given? Why?

YEAR 6

Key

Vocabulary:

bar model

 unit/non-unit fraction amountdenominator
parts
whole
divided
numerator
multiply
difference
equal to
greater than
less than
times-tables facts altogether
value

Stem Sentences:

- The whole is divided into \qquad equal parts. Each part is worth \qquad _.
- The numerator is \qquad , so
\qquad , then \qquad fifths are equal to \qquad -.
- If one fifth is equal to
\qquad then the whole is equal to \qquad and the whole is equal
- If five-sixths is equal to \qquad , then one-sixth is equal to \qquad to \qquad _.
- The whole is split into \qquad equal parts.
- To find one part, I need to divide by \qquad To find the whole, I need to multiply by

Maths - Measurements Converting Units

Small Steps:

1. Metric measures
2. Convert metric measures
3. Calculate with metric measures.
4. Miles and kilometres.
5. Imperial measures.

Choose the most appropriate unit for each measurement. - the length of a table

- the mass of a car

- the capacity of a water bottle

Sort the units of measurement into the table.

Length	Mass	Capacity

Write $\langle,>$ or $=$ to compare the measurements.

He is given a second piece of ribbon.

Now he has 296 cm of ribbon in total.
How long is the second piece of ribbon in centimetres?

Key Questions:

- Which units could you use to measure length, mass, capacity?
- Which is the most appropriate unit to measure the \qquad of a \qquad Why?
- Why do you think \qquad is not an appropriate estimate?
- Why would you not use kilometres to measure the length of the classroom? What would you use?
- What is the difference between capacity and volume?
- What is the same and what is different about kilometres?
- What is the same and what is different about 1.5 km and 1.500 km ?
- What do you notice about the conversions from metres to kilometres and grams to kilograms?
- Do you need to multiply of divide by 10/100/1000? How do you know?
- Which operation are you going to use? Why?
- How could you use a bar model to help you understand the question?
- How many grams are there in one kilogram?
- Does it matter if the items in the question are measured in different units? Why?
- How can you convert between metres and centimetres?

Use this fact to complete the tables.

g	kg
3,000	
	4
2,500	

kg	tonnes
7,000	
	8
9,500	

Stem Sentences:

- The best unit to measure the __ of a ___ would be \qquad because...
- There are \qquad grams in one kilogram, so there are \qquad grams in \qquad kilograms.
- There are \qquad in a \qquad -
\qquad , multiply/divide by \qquad

YEAR 6

Key

Vocabulary:
metric measures length mass capacity tonnes
difference between volume estimation units
measurement imperial units weight gravity
kilometres/metres
Multiply/divide
convert/conversions centimetres
decimal place value comparing inverse placeholder
kilograms/grams operations numerical
fraction of an amount adding/subtracting

Maths - Measurements Converting Units

Small Steps:

1. Metric measures
2. Convert metric measures
3. Calculate with metric measures.
4. Miles and kilometres.
5. Imperial measures.

Use the fact 5 miles $=8 \mathrm{~km}$ to complete the conversions.

- 10 miles m \qquad km
- 15 miles m \qquad km
- $32 \mathrm{~km}=$ \qquad miles
- $40 \mathrm{~km}=$ \qquad miles
(25 miles \qquad km
p 64 km \qquad miles

Key Questions:

- Which is further, one mile or one kilometre?
- What does the word "approximately" mean?
- What does the symbol "=" mean?
- How can you use the key fact of 5 miles $=8 \mathrm{~km}$ to calculate how many kilometres are approximately equal to 20 miles?
- When might you need to convert between miles and kilometres?

Stem Sentences:

- ___ miles are approximately equal to 8 km .
- 10 miles are approximately equal to \qquad km.

Here are Tiny's workings to convert 5 miles to kilometres.

Explain Tiny's mistake.

YEAR 6

Key

Vocabulary:
imperial metric measures miles
kilometres greater distance approximately equal conversions further

Write <, > or = to compare the distances.

Maths - Measurements Converting Units

Small Steps:

1. Metric measures
2. Convert metric measures
3. Calculate with metric measures.
4. Miles and kilometres.
5. Imperial measures.

1 inch $=2.5 \mathrm{~cm}$
1 foot $=12$ inches
1 pound $=16$ ounces

Use these key facts to complete the conversions.

> 2 inches $m \ldots \ldots \mathrm{~cm}$	- 2 feet $=\ldots$ _ inches
> __ inches $m 7.5 \mathrm{~cm}$	- 5 feet $=\ldots$ __ inches
> ___ inches $\approx 25 \mathrm{~cm}$	- 20 feet $=\ldots$ inches
- 12 inches $m \ldots \ldots \mathrm{~cm}$	- 100 feet $=\ldots \quad$ inches

1 gallon $=8$ pints

Use this key fact to complete the conversions.
$\begin{array}{ll}>2 \text { gallons }=_ \text {pints } & >_ \text {gallons }=40 \text { pints } \\ >10 \text { gallons }=\ldots \quad \text { pints } & >_ \text {gallons }=104 \text { pints }\end{array}$

1 pound (lb) $=16$ ounces
1 stone $=14$ pounds (lb)
Use these key facts to complete the conversions.

2 pounds = ___ ounces	> 2 stones $=\ldots \mathrm{lb}$
- 5 pounds $=$ ___ ounces	- 5 stones $=\square \longrightarrow \mathrm{lb}$
___ pounds $=240$ ounces	-_ stones $=154 \mathrm{l}$

- 1 stone $=14$ pounds
- 1 gallon $=8$ pints

Amir wants to make a cake.
Here are some of the ingredients he needs:

- 8 ounces caster sugar
- 6 ounces flour
- 6 ounces butter

This is what he has in his cupboards:

- 0.5 lb caster sugar
- 0.25 lb flour
- $\frac{3}{8} \mathrm{lb}$ butter

Does Amir have enough ingredients to bake the cake?
If not, how much more does he need to buy?

Key Questions:

- When do you use imperial measures instead of metric measures?
- Why is it easier to convert between metric measures than between imperial measures?
- Which is greater, one foot or one metre?
- Which is shorted, one centimetre or one inch?
- Which is heavier, one pound or one stone?

YEAR 6

Key

Vocabulary:
imperial measures metric
conversions approximate exact greater shorter heavier
equal

Stem Sentences:

- As 1 inch is approximately equal to ___ cm ,___ inches are approximately equal to \qquad cm.
- There are \qquad inches in 1 foot, so there are \qquad inches in \qquad feet. Sort the units of measurement into the table.

	Length	Mass	Capacity
Metric			
Imperial			

Maths - Decimals

Small Steps:

1. Place value within 1 .
2. Place value integers and decimals.
3. Round decimals.
4. Add and subtract decimals.
5. Multiply by 10,100 and 1,000 .
6. Divide by 10,100 and 1,000 .
7. Multiply decimals by integers.
8. Divide decimals by integers.
9. Multiply and divide decimals in context.

Use the diagrams to complete the sentences in as many ways as possible.

__ is one-tenth the size of \qquad
\qquad
is 10 times the size of \qquad
Scott has made a number on a place value chart.

Complete the sentences to describe Scott's number.
There are ___ ones, ___ tenths, ___ hundredths and thousandths.
The number is \qquad

Use a place value chart and plain counters to represent the numbers.

Ron has partitioned 0.536

$$
0.536=0.4+0.13+0.006
$$

Use a place value chart to partition 0.536 a different way. Compare answers with a partner.

Key Questions:

- What does each digit in a decimal number represent? How do you know?
- How many tenths/hundredths/thousandths are there in 1 whole?
- How many thousandths are there in 1 hundredth?
- What is the value of the digit \qquad in the number \qquad ?
- Which is greater, 0.3 or 0.14 ? How do you know?

Stem Sentences:

- There are \qquad tenths, \qquad hundredths and \qquad thousandths.
- The number is \qquad in \qquad
- There are \qquad __.
- ___ is 10 times/one-tenth the size of \qquad

YEAR 6

Key

Vocabulary:
3 decimal places represent place value values digits partition columns tenths hundredths thousandths ...times the size within 1 greater whole one-tenth the size

Maths - Decimals

Small Steps:

1. Place value within 1.
2. Place value -
integers and decimals.
3. Round decimals.
4. Add and subtract decimals.
5. Multiply by 10,100 and 1,000 .
6. Divide by 10,100 and 1,000 .
7. Multiply decimals by integers.
8. Divide decimals by integers.
9. Multiply and divide decimals in context.

Use the cards to complete the sentences in as many ways as possible.

___ are 10 times the size of
$_$are one-tenth the size of _______
___ are 100 times the size of ____
___ are one-hundredth the size of \qquad
\qquad
___ are 1,000 times the size of ___
___ are one-thousandth the size of \qquad

Complete the sentences to describe the number.

There are ___ ones, ___ tenth, ___ hundredths and ___ thousandths.
The number is

What decimal numbers are the arrows pointing to?

Key Questions:

- What does a decimal number represent?
- How many tenths/hundredths/thousandths are there in 1 whole?
- How many thousandths are there in 1 hundredth?
- What digit is in the \qquad column?
- What is the value of the digit \qquad in the number \qquad ?
- Which is greater, 1,897 or 3.1 ? How do you know?

> Is the statement always true, sometimes true or never true?

0	Tth	Hth	Thth

> A number with 3 decimal places is greater than a number with only 1 decimal place.

Explain your answer.

Use five plain counters to make a number greater than 1
What is the value of each digit in your number?
How many ways can you partition it?

YEAR 6

Key

Vocabulary:
3 decimal places greater than 1 place value digits decimal partition integer ones tens tenths hundredths thousandths columns
...times the size one-tenth the size number lines represent whole value

Stem Sentences:

- There are \qquad tenths, \qquad hundredths and \qquad thousandths.
- The number is \qquad .
- There are \qquad in \qquad
- ____ is $10 / 100 / 1,000$ times the size of \qquad _.
- ___ is one-tenth/hundredth/thousandths the size of \qquad

Maths - Decimals

Small Steps:

1. Place value within 1.
2. Place value integers and decimals.
3. Round decimals.
4. Add and subtract decimals.
5. Multiply by 10,100 and 1,000 .
6. Divide by 10,100 and 1,000 .
7. Multiply decimals by integers.
8. Divide decimals by integers.
9. Multiply and divide decimals in context.

Complete the table.

Number	3.472	2.196	0.804
Previous integer	3		
Next integer	4		
Previous tenth	3.4		
Next tenth	3.5		
Previous hundredth	3.47		
Next hundredth	3.48		

Key Questions:

- What is next/previous integer/tenth/hundredth?
- Using the number line, which multiple of \qquad is \qquad closer to?
- If you are rounding to the nearest \qquad which column do you need to look at to decide where to round to?
- If the digit in this column is between 0 and 4 , which multiple should you round to?
- Which multiple should you round to if the digit is a 5 ?

2.38 is closer to 2 than 3
2.38 rounded to the nearest integer is \qquad
2.38 is closer to 2.4 than 2.3
2.38 rounded to the nearest tenth is \qquad

Stem Sentences:

- The previous/next multiple of \qquad is \qquad -
\qquad than \qquad . is is \qquad _.
is closer to rounded to the nearest --

YEAR 6

Key

Vocabulary:
round
decimal places
integer tenth
hundredth multiples
before/after
number lines column
place value right
previous/next closer to nearest

Maths - Decimals

Small Steps:

1. Place value within 1.
2. Place value integers and decimals.
3. Round decimals.
4. Add and subtract decimals.
5. Multiply by 10,100 and 1,000 .
6. Divide by 10,100 and 1,000 .
7. Multiply decimals by integers.
8. Divide decimals by integers.
9. Multiply and divide decimals in context.

Whitney is working out $42.6+3.02$ using a place value chart

Esther uses place value counters to work out 1.615 - 0.64

Key Questions:

- How can you represent this question using place value counters?
- Do you have enough \qquad to make an exchange?
- Do you need to exchange any \qquad ?
- What are 10 tenths/ 10 hundredths/ 10 thousandths equal to?
- If there are not enough tenths/hundredths/thousandths for the subtraction, what do you need to do?

Ron is finding the total of 0.64 and 0.27

How does Ron know this?
Use a place value chart and counters to find the total of 0.64 and 0.27

Stem Sentences:

- \qquad added to \qquad is equal to \qquad _.

[^1]Represent the calculation correctly
What is the correct answer? subtract \qquad is equal to \qquad ${ }^{\circ}$tenths added to \qquad tenths is equal to \qquad tenths.

- I do/do not need to make an exchange because...

YEAR 6

Key

Vocabulary:

add subtract
3 decimal places exchanging columns place value
formal written method
zero placeholders bar models part-whole models calculation tenths
hundredths
thousandths equal to

Maths - Decimals

Small Steps:

1. Place value within 1.
2. Place value integers and decimals.
3. Round decimals.
4. Add and subtract decimals.
5. Multiply by 10,100 and 1,000.
6. Divide by 10,100 and 1,000.
7. Multiply decimals by integers.
8. Divide decimals by integers.
9. Multiply and divide decimals in context.

Nijah multiplies 0.213 by 1,000 using a place value chart.

$0.213 \times 1,000=213$
213 is 1,000 times the size of 0.2130 .123 is one-thousandth the size of 213

Jack uses a Gattegno chart to work out that $0.46 \times 100=46$

10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9
0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09

Amir uses a place value chart to divide 312 by 1,000

$312 \div 1,000=0.312$
312 is 1,000 times the size of 0.312 0.312 is one-thousandth the size of 312

Key Questions:

- How can you represent multiplying/dividing a decimal number with place value counters?
- What number is 10 times the size of \qquad ?
- What number is 100 times the size of \qquad ?
- What number is 1,000 times the size of \qquad ?
- How can you multiply/divide decimal numbers using a Gattegno chart?
- How can you use counters on a place value chart to multiply/divide numbers by 10/100/1,000?
- What is one-tenth the size of \qquad ?
- What is one-hundredth the size of \qquad ?
- What is one-thousandths the size of \qquad ?

Alex divides 0.12 by 10 using place value counters.

1 tenth = 10 hundredths
1 hundredth = 10 thousandths
$0.12 \div 10=0.012$

Stem Sentences:

is $10 / 100 / 1,000$ times the size of \qquad .

- ___ is one-tenth/hundredth/thousandth the size of \qquad
\qquad
\qquad _.
- To multiply by \qquad , I move the digits \qquad places to the
\qquad
\qquad .
- To divide by \qquad I move the digits \qquad places to the

YEAR 6

Key
 Vocabulary:

multiplied 2 decimal numbers ten
hundred
thousand
place value
decimal number
exchange column
left/right
Gattegno chart
...times the size
one-tenth the size
divide
whole
powers of 10

Maths - Decimals

Small Steps:

1. Place value within 1.
2. Place value integers and decimals.
3. Round decimals.
4. Add and subtract decimals.
5. Multiply by 10,100 and 1,000.
6. Divide by 10,100 and 1,000 .
7. Multiply decimals by integers.
8. Divide decimals by integers.
9. Multiply and divide decimals in context.

- Dexter uses place value counters to work out 3.42×3

> Aisha and Filip are using counters to work out multiplications.

What is the same and what is different about their calculations?
Scott uses place value counters in a place value chart to work out $5.32 \div 4$

He writes his calculation using the formal written method.

Key Questions:

- What is an integer?
- If you know $3 \times 2=6$, what else do you know?
- How can you show multiplying decimals by integers using counters?
- How is multiplying decimal numbers similar to/different from multiplying whole numbers?
- Do you have enough hundredths/tenths/ones to make an exchange?
- If you know that \qquad \div \qquad $=$ \qquad what else do you know?
- If you make the number being divided one-tenth the size, what must you do to the answer?
- How can you show this division using place value counters?
- How many groups of \qquad can you make with \qquad ?
- What happens to tenths or hundredths that you cannot group?

Stem Sentences:

- I need to exchange 10 \qquad for 1 \qquad
- I know that \qquad \times $=$ so I also know that \qquad x \qquad $=$ \qquad by \qquad is equal to \qquad _.
- I know that ___ \div \qquad is \qquad , so I also know that \qquad \div \qquad is \qquad
- If ones divided by \qquad is equal to \qquad , then \qquad
formal written method
formal written m
one-tenth
multiply
decimal places integers ten hundred thousand multiplication facts place value exchanging calculations
1-digit number
2-digit number partitioning
similar to/different from whole numbers hundredths tenths ones equal to divide
division facts pattern
smaller/greatest groups tenths/hundredths divided by ___ is equal to ___

YEAR 6

Key
 Vocabulary:

Maths - Decimals

Small Steps:

1. Place value within 1.
2. Place value integers and decimals.
3. Round decimals.
4. Add and subtract decimals.
5. Multiply by 10,100 and 1,000.
6. Divide by 10,100 and 1,000 .
7. Multiply decimals by integers.
8. Divide decimals by integers.
9. Multiply and divide decimals in context.

The table shows the prices of items in a shop

Item	Cost
Magazine	$£ 2.24$
Book	$£ 5.25$
CD	$£ 3.49$
DVD	$£ 4.75$

Esther wants to buy three magazines.
She uses coins in a place value chart alongside the formal written method to work out the total cost.

A box of chocolates costs 4 times as much as a chocolate bar. Together they cost $£ 7.55$

How much more does the box of chocolates cost than the chocolate bar?

Key Questions:

- How can you tell what operation you need to perform to answer this question?
- How can you represent this question using place value counters?
- What do you need to work out?
- How can you draw a bar model to represent this problem?
- Do you need to convert any units of measure to answer this question?

> 1.28 kg of sand is shared equally
> between 4 buckets.

\qquad
Explain the mistake that Tiny has made.
What is the mass of sand in each bucket?

Stem Sentences:

 multiplied by \qquad is \qquad -- ___ divided by \qquad is \qquad

YEAR 6

Key

Vocabulary:
formal written methods multiplication division
place value tenths
hundredths contexts
solve problems bar models operation order
conversions units measure convert multiplied divided

Maths - Algebra

Small Steps:

1. 1-step function machines.
2. 2-step function machines.
3. Form expressions.
4. Substitution.
5. Formulae.
6. Form equations.
7. Solve 1-step equations.
8. Solve 2-step equations.
9. Find pairs of values.
10. Solve problems with two unknowns.

Mo has made a function machine.

- If the input is 7 , what is the output?
- If the input is 4,023 , what is the output?

Complete the table for the function machine.

Input	5	23	5.1	23.2	0	-3	-5
Output							

- Here is a 2-step function machine.

- If the input is 5 , what is the output?
- If the input is 10 , what is the output?
- Complete the tables for the function machines.

Key Questions:

- How does the function machine work?
- What is the difference between an input and an output?
- If you know the input and function, how can you work out the output?
- If you know the output and function, how can you work out the input?
- What is the inverse of \qquad ?
- Does your rule work for all the sets of numbers?
- Which function should you apply first?
- What happens if you do not following the functions in the correct order?
- When given the output, which function should you do first?
- What Is the input if the output is \qquad ?
- What is the missing function if the input is \qquad the output is and one of the functions is \qquad ?
- Does it always matter what order you apply the functions?

Stem Sentences:

- If the input is \qquad the output is \qquad —.
- If I know the output, I need to ...
- If the input is ___ and the output is \qquad then the function is \qquad -
- First, I am going to \qquad then I am going to \qquad
- If the input is \qquad then the output is \qquad
\qquad
- The inverse of \qquad then \qquad is \qquad then -.

YEAR 6

Key

Vocabulary:
algebra
function machines operations inverse
missing numbers input/output function rule calculate difference
1-step/2-step order
forwards/backwards

Maths - Algebra

Small Steps:

1. 1-step function machines.
2. 2-step function machines.
3. Form expressions.
4. Substitution.
5. Formulae.
6. Form equations.
7. Solve 1-step equations.
8. Solve 2-step equations.
9. Find pairs of values.
10. Solve problems with two unknowns.

Jo and Max are using cubes to represent unknown numbers and base 10 ones to represent 1

Dan writes an expression for the 2 -step function machine.

Tom draws three shapes and gives each one a value.

Work out the values of the expressions.

Key Questions:

- What could x represent?
- How can you represent this expression using a bar model?
- How else can you write $a+a$?
- What is the same and what is different about the expressions $x+5$ and $5 x$?
- If the input is p, what is the output?
- If m is the input, what is the output after the first operation? What is the output after the second operation?
- If 1 cube is worth \qquad , what are 3 cubes worth?
- What does $4 x$ mean? If you know the value of x, how can you work out the value of $4 x$?
- What does substitute mean?
- How can you represent the expression as a bar model? Which parts of the bar model can you replace with a number? What is the total value of the bar model?
- Which part of the expression can you work out first? What is the total value of the expression?

Stem Sentences:

$+$ \qquad + \qquad $=3 \mathrm{x}$ \qquad $=$ \qquad _x , then I have \qquad x altogether.

- If I have \qquad x and I add/subtract \qquad
\qquad
- If ___ is worth \qquad , the \qquad is worth
- To work out the value of I need to replace the letter \qquad with the number \qquad and then calculate \qquad _.
\qquad

YEAR 6

Key

Vocabulary:
algebraic expressions letters numbers
convention multiplied repeated addition base 10
unknown number function machines

Maths - Algebra

Small Steps:

1. 1-step function machines.
2. 2-step function machines.
3. Form expressions.
4. Substitution.
5. Formulae.
6. Form equations.
7. Solve 1-step equations.
8. Solve 2-step equations.
9. Find pairs of values.
10. Solve problems with two unknowns.

Ron uses a formula to work out the areas of rectangles.

- What do the letters A, l and w represent?
- Use the formula to find the areas of the rectangles.

Max and Jo use this formula
to work out the cost in pounds (C) of four hours (h) of cleaning.

Who do you agree with? Explain your answer.

Key Questions:

- What is a formula?
- What formulae do you know?
- How is a formula similar to/different from an expression?
- What is the formula for \qquad ?
- If the formula is $t=3 s+1$ and you know that $s=$ \qquad —, how can you work out t?
- Which letter(s) do you know the value of? Which letters(s) can you work out?

Complete the table to show the number of circles and stars in the patterns.

Number of stars	1	2	3	5		
Number of circles	2				18	30

If $s=$ number of stars and $c=$ number of circles, which formula describes Fay's pattern?

The table shows the total number of legs on a given number of ants.

Complete the table and write a formula that describes
the pattern. the pattern.

$|$| Number of ants (a) | 1 | 2 | 3 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Number of legs (L) | 6 | | | 30 | 72 |

- In the formula \qquad
Stem Sentences: represents the letter \qquad represents \qquad and the letter \qquad
- To work out \qquad when I know \qquad I substitute \qquad into the formula.

YEAR 6

Key

formulae symbols area
substitute values input output relationships variables difference expression similar/different letters

Maths - Algebra

Small Steps:

1. 1-step function machines.
2. 2-step function machines.
3. Form expressions.
4. Substitution.
5. Formulae.
6. Form equations.
7. Solve 1-step equations.
8. Solve 2-step equations.
9. Find pairs of values.
10. Solve problems with two unknowns.

Tom thinks of a number and calls it x.
Which expression represents 5 more than Tom's number?

Double Tom's number is 64 Which equation shows this information?

Max has represented some equations.

Each linking cube represents y and each base 10 cube represents 1

What equations are represented?

Write equations to match the models.

Key Questions:

- If a is a number, how do you write " 3 times the value of a "?
- How do you write " 4 more than the number x "?
- If 4 more than the number x is equal to 26 , how can you write this as an equation?
- Is an equation the same as or different from a formula?
- What is the difference between an equation and an expression?
- Can you write the equation a different way?
- Is \qquad an equation or an expression? How do you know?

Here is a part-whole model

Write an equation representing the part-whole model.

Each shape has a different integer value.

YEAR 6

Key

Vocabulary:
form equations diagrams
word descriptions
difference algebraic expression equation value conventions bar model
part-whole models numerical more than formula more/less equal to times

What values might the shapes have?

Stem Sentences:

-

$+$ \qquad $+$ \qquad $=3 \mathrm{x}$ \qquad $=$ \qquad

- The equation___ means that the expression \qquad is equal to \qquad __.
- \qquad more/less than \qquad is equal to \qquad can be written as the equation \qquad $=$ $=$

Maths - Algebra

Small Steps:

1. 1-step function machines.
2. 2-step function machines.
3. Form expressions.
4. Substitution.
5. Formulae.
6. Form equations.
7. Solve 1-step
equations.
8. Solve 2-step
equations.
9. Find pairs of values.
10. Solve problems with two unknowns.

Ben has 9 counters altogether.
He has 3 counters in his
left hand and c counters in his closed right hand.
Which equation represents this problem?

How many counters does he have in his closed hand?
Write an equation to represent each bar model.
Then find the value of x for each one.

15		
x	x	x

12	
x	7

Explain how this 2-step function machine shows the equation $2 x-11=29$

Work out the value of x.

Write and solve equations for the models.

Key Questions:

- What does the expression $3 x$ mean?
- If you know 3 times the value of a number, how can you use this to work out the number?
- How can you represent the problem as a bar model?
- How can you represent the problem as an equation?
- What is the inverse of \qquad ?
- What does the bar model show?
- What can you use to work it out?
- How can you draw a function machine to represent the equation? How does the function machine help you to solve the equation?
- If you know 3 more than $2 x$, how can you work out $2 x$?
- If you know 5 less than $2 x$, how can you work out $2 x$?
- How can you represent the problem with a bar model? Which part(s) of the bar model do you already know? Which part(s) can you work out?
- What is the first step you need to take to solve the equation?

Stem Sentences:

- The inverse of \qquad is \qquad
- If ___ has been added to a number to give \qquad then to work out the number, I need to \qquad from \qquad - $x=$ \qquad so $x=$ \qquad
- The first step in solving the equation is to \qquad
\qquad
- The second step in solving the equation is to \qquad

YEAR 6

Key

Vocabulary:
solving equations notation
missing number same as
function machines input/output
inverse
operations
expression
value
times
bar model
add
one-step/two-step forwads/backwards

Maths - Algebra

Small Steps:

1. 1-step function machines.
2. 2-step function machines.
3. Form expressions.
4. Substitution.
5. Formulae.
6. Form equations.
7. Solve 1-step equations.
8. Solve 2-step equations.
9. Find pairs of values.
10. Solve problems with two unknowns.

Key Questions:

- What two numbers could add together to make \qquad ?
- What could the values of x and y be in the equation \qquad ?
- What are there several possible answers for this question?
- Have you found all the possible pairs of values? How do you know?
- In the equation \qquad if $x=$ \qquad what must the value of y be? If x is a different value, does the y also change?
- How can you draw a bar model to represent the equation
\qquad _?

YEAR 6

Key

Vocabulary:
equations
unknown values solutions
substitution pairs integer
greater than equal to negative decimal multiples add bar model product
a, b and c are integers between

0 and 5

Find the values of a, b and c.
How many possibilities can you find?

b are both whole numbers.
$a \times b=24$
Create a table to show all the possible sets of values for a and b.

Stem Sentences:

- In the equation $x+y=$ \qquad , if $x=$ \qquad then $y=$ \qquad and q could be
- If the product of p and q is ___, then p could be \qquad
\qquad

Is Tiny correct?
Explain your answer.路

Maths - Algebra

Small Steps:

1. 1-step function machines.
2. 2-step function machines.
3. Form expressions.
4. Substitution.
5. Formulae.
6. Form equations.
7. Solve 1-step equations.
8. Solve 2-step equations.
9. Find pairs of values.
10. Solve problems with two unknowns.

The sum of a and b is 30

The difference between a and b is 4

Use the bar model to work out the values of a and b.

Two apples and three bananas cost $£ 1.02$
Two apples and five bananas cost $£ 1.46$

Key Questions:

- How can you represent this information as a pair of equations?
- How can you represent this information with a bar model?
- What information does the bar model show?
- What else can you work out?
- How can you draw a bar model to represent the problem?
- Which parts can you label straight away?
- What else can you work out?
- Is there more than one possible solution?

The sum of x and y is 12
x is 3 times the size of y.

- Explain how you can use the bar model to work out the value of y.
- What is the value of x ?

Are there any other possible solutions?

Here is some information about two numbers, x and y.
$x+y=10$
$x-y=2$

- Label the information on the bar model.

- Use the bar model to work out the values of x and y.

YEAR 6

Key

Vocabulary:
solve problems unknowns solution
sum
difference bar models multiple values
total
equations equal to
label
lots of worth substituting

What is the total cost of one apple and one banana?

Stem Sentences:

$\xrightarrow{\text { Stem }}$, then $x=$ \qquad $=$ \qquad -.

- If \qquad lots of x is worth
\qquad I can find the value of \qquad by substituting
- If I know the value of \qquad into the equation \qquad .

Maths - Ratio

Small Steps:

Add or multiply?
2. Use ratio language.
3. Introduction to the ratio symbol.
4. Ratio and fractions.
5. Scale drawing.
6. Use scale factors.
7. Similar shapes.
8. Ratio problems.
9. Proportion problems
10. Recipes.

Each of these
ances can be comp sequences can be complete
using either addition or multiplication. ๑O

Do you agree with Tiny? Explain your answer.

The relationship between 2 and 8 can be described as additive or multiplicative.

Key Questions:

- How can you describe the relationship between these two numbers using addition/multiplication?
- What is the inverse of addition/multiplication?
- What addition/subtraction/multiplication/division calculations can be written from this information?
- Is the relationship in the sequence additive or multiplicative?
Complete the models to show the additive and multiplicative relationships.

- How do the relationships on the upper number line relate to those on the lower number line?

Complete the sequences.

\qquad

The double number line shows the relationship between two sets of numbers
Fill in the missing values to describe the relationships.

$$
\text { , 27, } 81
$$

\qquad
Are the relationships additive or multiplicative? Could they be both?

Stem Sentences:

- \qquad \times \qquad $=$ \qquad and \qquad $+$ \qquad $=$ \qquad -
. \qquad is \square the size of \qquad -.

YEAR 6

Key

Vocabulary:
additively multiplicatively expressed addition multiplication sequences relationship

Maths - Ratio

Small Steps:

1. Add or multiply?
2. Use ratio language.
3. Introduction to the ratio symbol.
4. Ratio and fractions.
5. Scale drawing.
6. Use scale factors.
7. Similar shapes.
8. Ratio problems.
9. Proportion problems.
10. Recipes.

Complete the sentences to describe the counters There are__red counters and

Key Questions:

_ yellow counters
For every ___ red counters, there are ___ yellow counters. For every ___ yellow counters, there are ___ red counters.

For every 16 yellow cubes, there are ___ blue cubes.
For every 8 yellow cubes, there are ___ blue cubes.
For every 1 blue cube, there are ___ yellow cubes.

Amir is using a double number line to find equivalent ratios.
(B) (B) B) (B) (G) (G) (G) (G) (G) (G) (G)

YEAR 6

Key

 Vocabulary:ratio
multiplicative relationship amounts value related comparisons double number line equivalent expressed ratio symbol dividing
common factor
simplifying fractions rearrange
simpler
for every...
colon
order
notation measure
masses ingredients recipes

- For every \qquad , there are tem Sentences:
- If there were \qquad there would \qquad —.
- A common factor of \qquad and \qquad is \qquad
- For every \qquad there are \qquad which ca
\qquad is \qquad _.
- The ratio of \qquad to , the first number represents \qquad and the second number represents \qquad .

Maths - Ratio

Small Steps:

1. Add or multiply?
2. Use ratio language.
3. Introduction to the ratio symbol.
4. Ratio and fractions.
5. Scale drawing.
6. Use scale factors.
7. Similar shapes.
8. Ratio problems.
9. Proportion problems.
10. Recipes.

Key Questions:

- What is the ratio of one part to another?
- How many parts are there altogether?
- What fraction of the whole is the first/second/third part?
- How are fractions and ratios similar? How are they different?
- What fraction does the ratio 1:2 mean? Is this the same as $1 / 2$ or is it different?
- How can you represent the ratio/fraction as a bar model?
There are some red and green
cubes in a bag.
$\frac{2}{7}$ of the cubes are red.
Are the statements true or false?

Stem Sentences:

- The ratio of \qquad to \qquad is \qquad
- There are \qquad pa \qquad is \qquad _.
- The fraction that is
\qquad
\qquad

YEAR 6

Key

 Vocabulary:differences similarities ratios
fractions simplifying dividing
common factors bar models counters whole altogether bar model

What is the same and what is different about the bar models?

Use the diagram to complete the sentences.
(B) B G G

The ratio of blue counters to green counters is 2 : \qquad
The fraction of counters that are blue is $\frac{2}{\square}$
The bar model shows the ratio 2:3:4

\mathbf{P}	\mathbf{P}	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{B}	\mathbf{B}	\mathbf{B}	\mathbf{B}

- What fraction of the bar is pink?
- What fraction of the bar is yellow?
- What fraction of the bar is blue?

Maths - Ratio

Small Steps:

1. Add or multiply?
2. Use ratio language.
3. Introduction to the ratio symbol.
4. Ratio and fractions.
5. Scale drawing.
6. Use scale factors.
7. Similar shapes.
8. Ratio problems.
9. Proportion problems.
10. Recipes.

Mo draws a square twice as big as square A and labels it B

A square has side lengths of 12 cm .

Scott has drawn a scale diagram of the shape in which the side length of each square in the grid represents 2 cm .

What is the scale factor of enlargement from P to Q ?

Key Questions:

- How do you know if a diagram is drawn to scale?
- Why might you need to draw a scale diagram?
- If 1 square represent 5 cm , what do \qquad squares represent? How do you know?
- If 1 square represents 5 cm , how many squares represent \qquad cm ? How do you know?
- Is there more than one way of finding the missing value?
- How is a scale like a ratio?
- What does "scale factor" mean?
- How do you draw an enlargement of a shape?

How can you work out the scale factor of enlargement between two shapes?
If a shape has been enlarged by a scale factor of \qquad how can you find the dimensions of the original shape? Do you need to multiply of divide to find the missing length? How do you know?

Stem Sentences:

- ___squares represents ___, so each square represents \qquad ${ }^{-}$
- Each square represents \qquad so \qquad squares represent \qquad x
- Each square represents \qquad , so \qquad is represented by \qquad \div
- \qquad squares. times as big, so the scale factor of the The shape is \qquad __.
- If a shape has been enlarged by a scale factor of \qquad I need to to find the original dimensions.
\qquad
\qquad

YEAR 6

Key

Vocabulary:
ratio
multiplicative relationships scale accurately scaled proportion dimensions calculating scaled lengths squares rectangles rectilinear shapes value represents enlarge enlargements ...times as big scale factors inverse operations multiply divide

Maths - Ratio

Small Steps:

. Add or multiply?
2. Use ratio language.
3. Introduction to the ratio symbol.
4. Ratio and fractions.
5. Scale drawing.
6. Use scale factors.
7. Similar shapes.
8. Ratio problems.
9. Proportion problems.
10. Recipes.

Do you agree with Tiny?
Explain your answer.

Explain why shapes A and B are similar.

- Explain why shapes A and C are not similar.
- Draw another shape that is similar to A .

Compare answers with a partner.

Which of the shapes are similar to shape A?

The Eiffel Tower is 320 m tall and 120 m wide.

Tommy makes a scale model of the Eiffel Tower.

His model is 16 cm tall.
How wide is his model?

Key Questions:

- What do you think "similar" means?
- What is the scale factor of the enlargement?
- Have all the sides been enlarged by the same amount?
- What are corresponding sides? Can you identify the corresponding sides in these two shapes?
- What do you notice about corresponding angles in similar shapes?
- Does it matter that the shapes are in a different orientation?

- Find the lengths of b and c.
- Measure the sizes of all the angles.

What do you notice?

Stem Sentences:

- Each side of the shape is \qquad times the size, so the shape has been enlarged by a scale factor of \qquad Therefore, the shapes are \qquad __.
- I know that the shapes are similar, because the corresponding sides have been enlarged by the same \qquad and the corresponding angles are \qquad
\qquad
\qquad

Maths - Ratio

Small Steps:

1. Add or multiply?
2. Use ratio language.
3. Introduction to the ratio symbol.
4. Ratio and fractions.
5. Scale drawing.
6. Use scale factors.
7. Similar shapes.
8. Ratio problems.
9. Proportion problems
10. Recipes.

- Ron is doing a sponsored walk for charity.

For every mile he walks, he will raise $£ 7$

- How much will Ron raise if he walks 3 miles?
- How much will Ron raise if he walks 22 miles?
- How many miles will Ron need to walk to raise $£ 42$?

The double number line shows the relationship between miles and kilometres.

- Complete the double number line.

- Complete the statements.

55 miles $=\ldots \quad \mathrm{km}$
__ miles $=96 \mathrm{~km}$

Key Questions:

- What is the ratio of \qquad to \qquad ?
- If there are \qquad how many \qquad must there be?
- If the total number of \qquad is \qquad how many \qquad must there be?
- If there are \qquad more \qquad than \qquad how many are there in total?
- How can you draw a bar model to solve the problem? Which parts of the model do you know? How can you work out the remaining parts?
- What is the multiplicative relationship between \qquad and \qquad
- If 3 \qquad $\operatorname{cost} E$ \qquad how much do 12 \qquad cost?
- If 5 \qquad cost E \qquad how can you work out what 1 \qquad costs?
- Once you know what 1 \qquad costs, how can you work out what 9 \qquad cost?
- How can a double number line help you solve this proportion problem,?

Stem Sentences:

- The ratio of \qquad to \qquad is \qquad - \qquad is equal to \qquad , so to find out how many \qquad there are, I need to multiply/divide by _ costs \qquad _.
- If ___ costs \qquad then \qquad I multiply/divide by \qquad .
- To get from \qquad to \qquad I will ...
- To find the cost of 1 \qquad

YEAR 6

Key
 Vocabulary:

problems ratio
multiplicative
multiplicative
relationships multiply divide amount value equivalent fractions
double number lines vertical horizontal bar models interpretation How many? total bar model parts equal to proportion
one-step two-step ultiply fractions
 verizontal

Tell a partner how this will help Eva to find the cost of 5 bread rolls What is the cost of 5 bread rolls?

> If I know the cost of 3 bread rolls, I can work out the cost of 1 bread roll)
> by dividing by 3

Maths - Ratio

Small Steps:

1. Add or multiply?
2. Use ratio language.
3. Introduction to the ratio symbol.
4. Ratio and fractions.
5. Scale drawing.
6. Use scale factors.
7. Similar shapes.
8. Ratio problems.
9. Proportion problems.
10. Recipes.

Here are some ingredients for cupcakes.

Tom wants to make 10 cupcakes. Explain to a partner how to work out what ingredients Tom will need.
How much of each ingredient will Tom need to make the different numbers of cupcakes?

\section*{| 15 cupcakes | 20 cupcakes |
| :--- | :--- |}

Here are some ingredients for soup.
How much of each ingredient is needed to make soup for the different numbers of people?

Cupcakes (makes 5)
100 g flour
2 eggs
40 g sugar

25 cupcakes

Soup (for 6 people)
1 onion
60 g butter
180 g lentils
1.2 litres stock

480 ml tomato juice

Here are the ingredients for an apple crumble.

How much of each ingredient is needed to make apple crumble for the different numbers of people?

Apple crumble
 (5 people)

300 g plain flour
225 g brown sugar
200 g butter
450 g apples

Key Questions:

- How can a double number line help you to decide how much of each ingredient you need?
- How many times more people are there? How will this affect the amount of each ingredient needed?
- Do you need to find the amounts needed for one person first? Why or why not?
- What is the greatest number of \qquad you can make with ?
- How does changing the quantities in a recipe link to using scale factors?
Sam is making pancakes.

She follows a recipe with this list of ingredients.
She has 1.2 litres of milk and wants to make as many pancakes as she can.
How many eggs will she need?

Pancakes
120 g plain flour
2 eggs
300 ml milk

YEAR 6

Key Vocabulary:

ratio

 proportion solving problems ingredients recipes adaptedscaling-up/scaling-down amount multi-step multiplying dividing quantities adjusting
double number line greatest
scale factors
...times as many

[^2]
Maths - Area, Perimeter and Volume

Small Steps:

1. Shapes - same area.
2. Area and perimeter
3. Area of a triangle counting squares.
4. Area of a rightangled triangle.
5. Area of any triangle.
6. Area of a parallelogram.
7. Volume - counting cubes.
8. Volume of a cuboid.

Complete the sentences to describe the rectangle.

The length of the rectangle is \qquad cm . The width of the rectangle is ___cm.

The total number of squares in the
rectangle is \qquad
The area of the rectangle is \qquad cm^{2}
Use the same method to find the areas of these rectangles.

What do you notice?

Each square represents $1 \mathrm{~cm}^{2}$

Which shapes have an area of $12 \mathrm{~cm}^{2}$?
Which shapes have an area of $16 \mathrm{~cm}^{2}$?
Why is there more than one representation for each?

Find the areas of the rectangles.

Explain your method to a partner.

Key Questions:

- How can you find the area of this shape? Is there more than one way?
- Do shapes that have the same area have to look the same?
- How can you use factor pairs to find shapes that would have the same area?
- How would you draw more than one rectangle that has an area of ___cm2?

Do you agree with Alex?
Explain your answer.

Stem Sentences:

- The total number of squares in the rectangle is \qquad _.
- The area of the rectangle is \qquad cm2.
- The length of the rectangle is \qquad cm.
- The width of the rectangle is \qquad cm .
- The area of the rectangle is \qquad cm2.

Vocabulary:

areas
shapes
difference
perimeter
counting
squares identify same rectilinear multiplication rectangles
factor pairs
total
length
width
d

YEAR 6

Key

Maths - Area, Perimeter and Volume

Small Steps:

1. Shapes - same area.
2. Area and perimeter
3. Area of a triangle counting squares.
4. Area of a rightangled triangle.
5. Area of any triangle.
6. Area of a parallelogram.
7. Volume - counting cubes.
8. Volume of a cuboid.

Tiny is finding the area of this shape.

- Find the area and perimeter of each rectangle.

- Work out the perimeters of the rectilinear shapes

Key Questions:

- What is perimeter? What is area?
- How can you find the area of the rectangle?
- How can you find the perimeter of the rectangle?
- What is the formula to find the area of a rectangle?
- How can you split the rectilinear shape into rectangles? Is there more than one way?
- How is finding the area/perimeter of a rectilinear shape different to finding the area/perimeter of a rectangle? How is it similar?
- How can you work out the other side lengths?

Both of these rectilinear shapes are made from two rectangles.

Work out the areas of the rectangles to work out the areas of the rectilinear shapes.

Do you agree with Tiny?
Explain your answer.

Stem Sentences:

- The formula to find the area of a rectangle is ...
- To find the perimeter of a rectangle, I ...

YEAR 6

Key

Vocabulary:
areas
perimeters rectangles rectilinear shapes compare efficiency split calculating length add subtract part missing whole formula similar different

Maths - Area, Perimeter and Volume

Small Steps:

1. Shapes - same area.
2. Area and perimeter
3. Area of a triangle counting squares.
4. Area of a rightangled triangle.
5. Area of any triangle.
6. Area of a parallelogram.
7. Volume - counting cubes.
8. Volume of a cuboid.

Complete the sentences to find the area of the triangles.

The triangle has ___ full squares.
The triangle has ___ half squares.
\qquad
\qquad $+$ \qquad $=$

The total area of the triangle is ___ cm^{2}

Draw three different triangles that have an area between $5 \mathrm{~cm}^{2}$ and $15 \mathrm{~cm}^{2}$

Label the approximate area of each triangle.

Key Questions:

- How is finding the area of a triangle similar to finding the area of a rectangle when counting squares? How is it different?
- How will you count the squares accurately?
- Is more or less than half the square shaded?
- Can you see any parts of squares that combine to make approximately one full square?
- How does the area of the rectangle link to the area of a triangle? Why do you think this happens?

Tiny says that the area of the triangle is $15 \mathrm{~cm}^{2}$

Explain what Tiny has done wrong.

Tiny is incorrect.
Would your estimate change if

angle.

the splat was in a different place?

Stem Sentences:

- The triangle has \qquad full squares.
- The triangle has \qquad half squares.
- The area of the triangle is \qquad cm2.
- The approximate area of the triangle is \qquad cm2.

YEAR 6

Key

 Vocabulary:
area

triangle counting squares estimated efficient strategies calculating shapes full whole
half
separately
combine
sections greater less than similar different accurately approximately

Maths - Area, Perimeter and Volume

Small Steps:

1. Shapes - same area.
2. Area and perimeter.
3. Area of a triangle counting squares.
4. Area of a rightangled triangle.
5. Area of any triangle.
6. Area of a parallelogram.
7. Volume - counting cubes.
8. Volume of a cuboid.

Here is a rectangle and a right-angled triangle.

- What is the area of the rectangle?
- What is the area of the right-angled triangle?
- What do you notice?

Scott uses the formula to work out the area of this right-angled triangle.

area $=\frac{1}{2} \times$ base \times perpendicular height
area $=\frac{1}{2} \times 6 \times 4=\frac{1}{2} \times 24=12 \mathrm{~cm}^{2}$

Key Questions:

- How can you split the rectangle into two right-anglestriangles?
- What do you notice about the two triangles?
- What do you notice about finding the area of a rectangle and finding the area of a right-angled triangle?
- What is the formula to find the area of a triangle/rightangled triangle?
- What does "perpendicular" mean?
- How do you know which measurement is the base/perpendicular height?
- How do you know which side is the base?
- How do you know what the perpendicular height is?
- How do you know that you are using the correct lengths?
- Is there more than one way to find the area of this triangle?
- Is the base always at the bottom of the triangle?

Stem Sentences:

- The area of the right-angled triangle is \qquad the area of the rectangle.
- The formula for the area of a triangle is ...
- The base is \qquad cm.
- The perpendicular height is \qquad cm.
- Area $=\frac{\square}{\square} \times$
 \times -

YEAR 6

Key

 Vocabulary:area
right-angled non-right-angled triangle length perpendicular height rectangle half formula multiply base width split measurement

Find the area of each triangle.

6 cm

Maths - Area, Perimeter and Volume

Small Steps:

1. Shapes - same area.
2. Area and perimeter
3. Area of a triangle counting squares.
4. Area of a rightangled triangle.
5. Area of any triangle.
6. Area of a parallelogram.
7. Volume - counting cubes.
8. Volume of a cuboid.

Work out the areas of the parallelograms.

Explain your method to a partner.
Annie has worked out the area of this parallelogram.

Use Annie's method to find the areas of the parallelograms.

Label the base b and perpendicular height h on each parallelogram.
Then find the area of each shape.

Key Questions:

- How could you change the parallelogram into a rectangle? How will this help you to find the area?
- How can you count the squares accurately to find the area?
- How do you know you have found the base/perpendicular height?
- What is the formula for finding the area of a parallelogram?
- When you have different units, what is your first step?

These parallelograms each have an area of $40 \mathrm{~cm}^{2}$
Find the perpendicular height of each shape.

Stem Sentences:

- The base of the parallelogram is ___cm.
- The perpendicular height of the parallelogram is ___cm.
- The area of the parallelogram is \qquad x \qquad $=$ \qquad cm2.

YEAR 6

Key

Vocabulary:

area
parallelogram identifying formula parallelogram properties compare rectangle
cut-and-move
rearranged
length
width
base
perpendicular height multiply
measurements count change different units

Maths - Area, Perimeter and Volume

Small Steps:

1. Shapes - same area.
2. Area and perimeter.
3. Area of a triangle counting squares.
4. Area of a rightangled triangle.
5. Area of any triangle.
6. Area of a parallelogram.
7. Volume - counting cubes.
8. Volume of a cuboid.

Does it matter in which order you multiply the numbers?

Find the volumes of the cubes.

Key Questions:

- What is volume?
- How is volume different from area?
- How can you count the number of cubes efficiently?
- If each cube has a volume of 1 cubic centimetre, what is the volume of the shape?
- How many cubes are there in this layer? How many equal layers are there? So how can you find the volume?
- What is the length/width/depth of this cuboid?
- How do you find the total volume of a cuboid?
- What is the same and what is different about area and volume?
- What is the most efficient order to multiply the three number together?

Stem Sentences:

- The volume of the shape is ___cubes.
- The volume of the shape is __cm3.
\qquad equal layers, so the volume is \qquad es in each layer and cubes.
- There are \qquad cubes in each layer.
- There are \qquad layers.
- The volume of the cuboid is \qquad is. The height is \qquad -.
- The length is \qquad The width is
\qquad \times \qquad x \qquad = \qquad
\qquad

YEAR 6

Key

Vocabulary:
volume amount space solid object counting cubes
cubic centimetres unit measure shapes multiplying single layer equal layer
cuboids prisms total
length width height depth formula area different associative law

Maths - Fractions, Decimals and Percentages

Small Steps:

1. Decimal and
fraction
equivalents
2. Fractions as division.
3. Understand percentages.
4. Fractions to percentages.
5. Equivalent fractions, decimals and percentages.
6. Order fractions, decimals and percentages.
7. Percentage of an amount - one step.
8. Percentage of an amount - multistep.
9. Percentages missing values.

The bar model is split into tenths.

- Complete the sentences.

The whole has been divided into ___ equal parts.
Each part is worth \qquad
As a fraction, this is written \qquad

Use the fraction and decimal walls to complete the equivalents

$>\frac{1}{2}=\frac{\square}{4}=\frac{\square}{10}=$

$\Rightarrow 0.2=\frac{1}{\square}=\frac{\square}{10}$

Rosie has converted three-quarters to a decimal.

Key Questions:

- If the whole has been split into 10/100 equal parts, what is each part worth as a fraction/decimal?
- If you know that \qquad is equivalent to \qquad what is \qquad as a decimal?
- How can you convert fractions with a denominator of 100 to decimals?
- How can you convert fractions with a denominator that is a factor of 100 to decimals?
- How can you find equivalent fractions?
- Why might it be helpful to find an equivalent fraction with a denominator of $100 / 1,000$?

Tiny wants to convert $\frac{137}{500}$ to a decimal.

Explain a different method that Tiny could use.
Write $\frac{137}{500}$ as a decimal.

Stem Sentences:

- The first/second digit after a decimal point represents \qquad
\qquad and the
- To find an equivalent fraction, I need to \qquad or \qquad the

YEAR 6

Key

 Vocabulary:equivalents fractions decimals
fraction wall common denominator simplify larger whole
equal parts worth convert factor
digit
decimal point common factors common multiples

Maths - Fractions, Decimals and Percentages

Small Steps:

1. Decimal and fraction equivalents
2. Fractions as division.
3. Understand percentages.
4. Fractions to percentages.
5. Equivalent fractions, decimals and percentages.
6. Order fractions, decimals and percentages.
7. Percentage of an amount - one step.
8. Percentage of an amount - multistep.
9. Percentages missing values.

Aisha uses place value counters to convert $\frac{1}{2}$ to a decimal by

 dividing 1 whole by 2

Kim converts $\frac{3}{4}$ to a decimal.

Key Questions:

- If the denominator is \qquad how many equal parts are there? What are you dividing by?
- Can you share 1 one into 4 equal parts? What can you exchange the 1 one for?
- What can you exchange the remaining \qquad tenths for?
- What do you notice about the decimal parts when dividing 1 by 3?
- What does "recurring" mean?
- How do you know that $1 / 2=2$ or $5 / 8=1.6$ cannot be correct?

How long is the piece of wood that is painted red?

Give your answer in metres and then in centimetres.

Filip shares 7 large pizzas equally with 7 of his friends.

Esther shares 5 large pizzas with 5 of her friends.
Who gets more pizza, Filip or Esther? Use decimals to help compare.

YEAR 6

Key

Vocabulary:
fractions
division
converting
decimals
divisions
place value exchange tenths share equal groups multiple exchanges equivalents short division recurring denominator equal parts same as

Stem Sentences:

- The fraction \qquad can be expressed as \qquad \div

[^3]- \qquad is the same as the fraction \qquad - \cdot
- I can exchange 1 \qquad for \qquad _.

Maths - Fractions, Decimals and Percentages

Small Steps:

1. Decimal and fraction equivalents.
2. Fractions as division.
3. Understand percentages.
4. Fractions to percentages.
5. Equivalent fractions, decimals and percentages.
6. Order fractions, decimals and percentages.
7. Percentage of an amount - one step.
8. Percentage of an amount - multistep.
9. Percentages missing values.

Here are some hundred squares.

- How many parts out of 100 are shaded on each hundred square?
- What percentage of each hundred square is shaded?
- What percentage of each hundred square is not shaded? What do you notice?

What percentage of each bar model is shaded?
Use the sentences to help.

100% has been split into ___ equal parts.
Each part is worth \qquad \%.

Key Questions:

- What does "per cent" mean?
- How many parts are shaded/not shaded?
- What does 100% mean?
- How many equal parts is the bar model split into? What percentage is each part worth?
- How many ways could you make 95% using $50 \%, 25 \%$, $10 \%, 5 \%$ and 1% ?

YEAR 6

Key

 Vocabulary:percentages per cent
parts per 100 whole equal parts bar models multiples estimate splitting
complements to 100 shared halve

Shade the percentages on the bar models.

- If the whole is shared into $100 / 10 / 5 / 4 / 2$ equal parts, each part represents \qquad \%.
- If \qquad pa \qquad \%, I can halve \qquad \%.

Maths - Fractions, Decimals and Percentages

Small Steps:

1. Decimal and fraction equivalents
2. Fractions as division.
3. Understand percentages.
4. Fractions to percentages.
5. Equivalent fractions, decimals and percentages.
6. Order fractions, decimals and percentages.
7. Percentage of an amount - one step.
8. Percentage of an amount - multistep.
9. Percentages missing values.

Max uses a hundred square to convert $\frac{31}{100}$ to a percentage.

The bar models show that $\frac{1}{10}$ is equal to 10%.

Use the bar models to complete the statements.

Whitney converts $\frac{3}{5}$ to a percentage.

Use Whitney's method to convert the fractions to percentages.

Key Questions:

- What is a percentage?
- If the whole is split into 100 equal parts, then what percentage is \qquad parts equivalent to?
- How are percentages and fractions similar/different?
- If you know $1 / 5$ is equal to 20%, what percentage is $4 / 5$ equal to?
- How do you find an equivalent fraction?
- How many $20 \mathrm{~s} / 25$ s are there in 100 ?
- What do you know about the relationship between $1 / 4$ and 1/8?

$$
\text { Tiny converts } \frac{13}{25} \text { to a percentage. }
$$

What mistake has Tiny made? What is the correct percentage?

Stem Sentences:

- $\quad \%$ is equivalent to $\frac{\square}{100}$
- $\frac{\square}{\square}$ is equivalent to $\frac{\square}{100}$ because ...
- The fraction $\frac{\square}{\square}$ is equivalent to \qquad

```
\frac{13}{25}=\frac{13}{100}=13%
    \times4
```


YEAR 6

Key

Vocabulary:
equivalent fractions percentages
bar models
equivalents split
equal parts non-unit fractions
convert
denominator multiply divide similar/different equal to

Maths - Fractions, Decimals and Percentages

Small Steps:

1. Decimal and fraction equivalents
2. Fractions as division.
3. Understand percentages.
4. Fractions to percentages.
5. Equivalent fractions, decimals and percentages.
6. Order fractions, decimals and percentages.
7. Percentage of an amount - one step.
8. Percentage of an amount - multistep.
9. Percentages missing values.

Complete the sentences to describe the hundred square.

The decimal shaded is \qquad
The percentage shaded is \qquad

What is the same about each bar model? What is different?

- Shade three parts of each bar model.

What fraction, decimal and percentage is shaded?

- What other equivalent fractions, decimals and percentages can you find?

Complete the number line to show the equivalent fractions, decimals and percentages.

Key Questions:

- How many parts has the whole been split up into? What fraction is each part worth?
- If the whole is 100%, what is $1 / 2,1 / 4,1 / 5$?
- If $1 / 10$ is equal to 10%, what is $3 / 10$ equal to?
- How do you find equivalent fractions?
- How many 5 s are there in 100 ?
- Can the fraction be simplified? How do you know?

YEAR 6

Key

 Vocabulary:fraction decimal percentage equivalents bar models number lines non-unit fractions converting denominator conversion
simplify
parts
whole
split
worth
equal

Stem Sentences:

- If the whole is equal to 100%, then each part is worth \qquad \%.
- If $\frac{1}{\square}$ is equal to \qquad $\%$, then \square is equal to \qquad \%.
- To find an equivalent fraction with a denominator of 100 , I need to \qquad by \qquad _.

Maths - Fractions, Decimals and Percentages

Small Steps:

1. Decimal and fraction equivalents
2. Fractions as division.
3. Understand percentages.
4. Fractions to percentages.
5. Equivalent fractions, decimals and percentages.
6. Order fractions, decimals and percentages.
7. Percentage of an amount - one step.
8. Percentage of an amount - multistep.
9. Percentages missing values.

Teddy knows that $\frac{11}{20}$ is greater than a half and 42% is less than a half because it is less than 50%, so $\frac{11}{20}$ is greater than 42%. Use Teddy's method to write "greater" or "less" to complete the sentences.

- 0.45 is__ than $\frac{16}{30}$
- $\frac{251}{500} \mathrm{i}$ \qquad than 15%.
$-\frac{13}{24}$ is ___ than 0.5
- 50% is than 0.309

Aisha knows that $\frac{9}{10}$ is closer to 1 whole than a half, but 52% is closer to a half than 1 whole, so $\frac{9}{10}$ is greater than 52%. Use Aisha's method to write < , > or = to compare the amounts.

Kim converts $\frac{13}{20}$ to $\frac{65}{100}$, which is equivalent to 65%.
She uses this to recognise that $\frac{13}{20}<67 \%$.
Use Kim's method to write < , > or = to compare the amounts.

Order the numbers from greatest to smallest.

Write the values in ascending order.

Key Questions:

- What fraction/decimal/percentage is ___ equivalent to?
- Which is the greater amount, \qquad or \qquad ? How do you know?
- Which of the amounts are greater than a half?
- Which of the amounts is closer to 1 whole?
- Where do these amounts go on a number line?
- Is it easier to convert the numbers to fractions, decimals or percentages?

There is no fraction, decimal or percentage that is greater than $\frac{99}{100}$. 0.99 or 99%, but smaller than 1 whole.

Explain your answer
compare order
decimal numbers
3 decimal places ordered fractions numerator
denominator conversion closer/further away whole greater/smaller equivalent

Key

Vocabulary:

Write $<,>$ or $=$ to compare the amounts.

Stem Sentences:

___ is greater/smaller than one half, and \qquad is smaller/greater than one half, \qquad is greater/smaller than \qquad
\qquad is equivalent to \qquad , so it is greater/smaller than \qquad .
\qquad

Maths - Fractions, Decimals and Percentages

Small Steps:

1. Decimal and fraction equivalents
2. Fractions as division.
3. Understand percentages.
4. Fractions to percentages.
5. Equivalent fractions, decimals and percentages.
6. Order fractions, decimals and percentages.
7. Percentage of an amount - one step.
8. Percentage of an amount - multistep.
9. Percentages missing values.

There are two lots of 50% in 100%.

This means that to find 50% of an amount, you divide it by 2 Work out 50% of each number.

There are four lots of 25% in 100%.

This means that to find 25% of an amount, you divide it by 4 Work out 25% of each number.

What do you notice about your answers?
Why does this happen?

Here is a method for finding 11% of 250

$$
\begin{aligned}
10 \% \text { of } 250 & =25 \\
1 \% \text { of } 250 & =2.5 \\
11 \% \text { of } 250 & =25+2.5=27.5
\end{aligned}
$$

Use this method to work out the percentages.

Key Questions:

- How are percentages and fractions similar/different?
- How do you find a fraction of an amount?
- How can you represent this question with a bar model?
- How many lots of $10 / 20 / 25 / 50 \%$ are there in 100% ?
- What do you need to divide a number by to find 10/20/25/50\%?
- What strategies could you use to divide by \qquad ?
- How can you find $1 \% / 10 \% / 20 \% / 25 \% / 50 \%$ of a number?
- How can you use 10% to find 30% ?
- How can the percentage 36% be made using $1 \%, 5 \%$, $10 \%, 20 \%, 25 \%, 50 \%$ and 100% ?
- If you know 1% of an amount, how can you work out 37% of that amount?
- If you know 1% of an amount, how can you work out 99% of that amount?

Stem Sentences:

- There are \qquad lots of \qquad $\%$ in 100\%.
- To find \qquad \% of a number, I need to divide by \qquad
- The whole amount is worth \qquad _\%.
- To find \qquad $\%$, I need to divide the whole by \qquad .
- If 100% is equal to \qquad then \qquad \% is equal to \qquad -.
- ___ \% is made up of \qquad _\%, \qquad and \qquad \%.
- ___ \% of \qquad is equal to \qquad
- If 100% is equal to \qquad , then \qquad \% is equal to \qquad -.
- $\quad \%$ is equal to \qquad lots of \qquad \%.

YEAR 6

Key
 Vocabulary:

calculate percentages amounts fractions one-step dividing bar models efficient calculation digits halving
formal written method similar/different
lots of
worth
whole
equal to
multi-step multiples multiply

Small Steps:

1. Decimal and fraction equivalents
2. Fractions as division.
3. Understand percentages.
4. Fractions to percentages.
5. Equivalent fractions, decimals and percentages.
6. Order fractions, decimals and percentages.
7. Percentage of an amount - one step.
8. Percentage of an amount - multistep.
9. Percentages missing values.

Maths - Fractions, Decimals and Percentages

If you know 10% of a number, you can multiply by 10 to find the whole.

100%									
10%	10%	10%	10%	10%	10%	10%	10%	10%	10%

- If you know

Key Questions:

 the whole?- How many lots of \qquad $\%$ are there in 100% ?
- If you know 23%, how can you find 1% ? Once you know 1%, how can you find 100% ?

YEAR 6

Key

Vocabulary:

percentages
whole number
lots of
multiply
divide
fractions

- If you know 40%, how can you find 10%
- Once you know 10%, how can you find 100% ?
- How can linking percentage's to fractions help you to answer this question?

Fill in the missing values to make
the statement correct.

Can you find more than one way?
12% of a number is 36
I con find 1% by
dividing by 12 , then multiply by
100 to find the whole.
Use Max's method to find the whole.

- 30% of \qquad $=360$
-70\% of \qquad $=4.9$
- 90% of \qquad $=0.36 \mathrm{~kg}$
- 60% of \qquad $=92 p$

Use the bar models to work out the missing numbers.

Stem Sentences:

- If ___ \% of a number is ___, then the whole is \qquad .
- There are \qquad lots of \qquad o in 100\%
- If \qquad \% of a number is \qquad , then 1% of the number is \qquad so 100%
\qquad

[^0]: Each child gets $\frac{1}{5}$ litre of orange juice.

[^1]: What mistake has Tiny made?

[^2]: Who can make the most smoothies?

[^3]: - Explain why each method works.
 - Whose method do you prefer?

