Maths - Place Value

Small Steps:

1. Represent numbers to 100 .
2. Partition numbers to 100 .
3. Number line to 100 .
4. Hundreds.
5. Represent numbers to 1000.
6. Partition numbers to 1000 .
7. Flexible partitioning of numbers to 1000 .
8. Hundreds, tens and ones.
9. Find 1,10 or 100 more or less. +
10. Number line to 1000
11. Estimate on a number line to 1000.
12. Compare numbers to 1000.
13. Order numbers to 1000.
14. Count in 50's.

-00000000000000000000-$-0000000-$

Key Questions:

- How have the beads been grouped? How does this help you to count?
- Is it quicker to count in tens or ones?
- How many tens do you have? How many ones do you have?
- How many ones make 1 ten?
- How else can you show this number.
- How can you use the whole and this part to work out the missing part?
- How can you use base 10 to draw a picture to help you partition?
- How can you complete the part-whole model in a different way?

YEAR 3

Key

Vocabulary:
tens
ones
grouped count
represents digit partitioning part-whole addition sentence value

- There are \qquad tens and

Stem Sentences:

- The \qquad represents \qquad ones. The number is \qquad _.
- The \qquad represents \qquad groups of ten.
- There are \qquad tens and \qquad ones ones. The number is \qquad -
- The whole is \qquad One part is \qquad The other part is \qquad -.
- \qquad tens and \qquad ones is the same as \qquad tens and \qquad ones.

YEAR 3

Small Steps:

1. Represent numbers to 100
2. Partition numbers to 100 .
3. Number line to 100 .
4. Hundreds.
5. Represent numbers to 1000
6. Partition numbers to 1000 .
7. Flexible partitioning of numbers to 1000.
8. Hundreds, tens and ones.
9. Find 1,10 or 100 more or less. +
10. Number line to 1000
11. Estimate on a number line to 1000 .
12. Compare numbers to 1000.
13. Order numbers to 1000 .
14. Count in 50's.

- Complete the number lines.

How many marbles are there?

Complete the number track

Key Questions:

- What is the start point? What is the end point?
- How many intervals are there? What is each interval worth?
- What is the number line counting up in? How do you know?
- Where would ___ be on the number line? How do you know?
- Why can you only estimate the position of \qquad on the number line?
- When counting in 10 's, what number comes after 90?
- If you count from zero in 100's, will you say 40?
- When counting in 100's, what comes after 500? How do you know?
- How many tens are there in 100 ?
- If there are 10 tens in 100 , how many tens are there in 200?
- How does the base 10 show that 100 is 10 times the size of 10?

Stem Sentences:

Key
 Vocabulary:

number line estimate position division interval hundreds equivalent same times the size multiples thousand 3-digit multiple base 10

- That start point is \qquad and the end point is \qquad —.
- There are ___ intervals on the number line.
- Each interval is worth \qquad -.
- The number line is counting up in \qquad hundreds in \qquad This
- There are \qquad tens in 100 and \qquad means there are \qquad tens in \qquad -.

Small Steps:

1. Represent numbers to 100
2. Partition numbers to 100 .
3. Number line to 100 .
4. Hundreds.
5. Represent numbers to 1000.
6. Partition numbers to 1000
7. Flexible partitioning of numbers to 1000.

Key Questions:

- What is the value of each of the base 10 pieces?
- How many hundreds are in the number? How many tens are in the number? How many ones are in the number?
- Why do you need to make an exchange when you have 12 tens?
- Does the order in which you build the number matter?
- How else can you represent the number?
- How many hundreds/tens/ones are there in 465?
- How do you write a number that has zero tens?
- How do you write a number that has zero ones?
- What number is equal to $300+70+9$?
- What is the value of the missing part? How do you know?
- What is the value of the digit 6 in 465 ?
- Can you partition the number in more than one way?
- Explain why $300=200+100$.
- Is $200+100+50+16$ equal to $300+60+6$? How do you know?
- What number is made of 3 hundreds and 15 tens?

Stem Sentences:

- There are \qquad hundreds, \qquad tens and \qquad ones.
- The number is \qquad _.

Complete the number sentences

- $847=800+40+\ldots$
- $615=$ \qquad $+10+5$
- $324=300+$ \qquad $+$

8. Hundreds, tens and ones.
9. Find 1,10 or 100 more or less. +
10. Number line to 1000
11. Estimate on a number line to 1000 .
12. Compare numbers to 1000
13. Order numbers to 1000.
14. Count in 50's.
 $+$
?
is made up of \qquad hundreds, \qquad tens and \qquad ones

- There are ___ hundreds, ___tens and ____ones. The number is __.
- \qquad has \qquad hundreds, \qquad tens and ones.

Key
 Vocabulary:

represent thousand
base 10
hundreds
times the size numbers zeros columns
placeholder exchange value
broken apart partition tens ones part-whole 3-digit parts

- ___ hundreds can be partitioned into ___ hundreds and \qquad hundreds.

Maths - Place Value

YEAR 3

Small Steps:

1. Represent numbers to 100 .
2. Partition numbers to 100 .
3. Number line to 100 .
4. Hundreds.
5. Represent numbers to 1000.
6. Partition numbers to 1000 .
7. Flexible partitioning of numbers to 1000 .
8. Hundreds, tens and ones.
9. Find 1,10 or 100 more or less. $+$
10. Number line to 1000 .
11. Estimate on a number line to 1000.
12. Compare numbers to 1000.
13. Order numbers to 1000.
14. Count in 50's.

10 more than
my number is equal to
100 less than 320

What is Jack's number?
Explain your thinking.
(1):(:):(1)(1)(1)

Key Questions:

- What is the same about representing a number using base 10 and using place value counters? What is different?
- How do you know the value of the counter?
- How do you know which column to place the counter in?
- How many hundreds, tens and ones is \qquad made up of?
- How can you use plain counters to represent a number in a place value chart?

Key
 Vocabulary:

number
hundreds
tens
ones
place value
base 10
more
less
adding counters charts

- How can you show this using a place value chart?
- When finding $1 / 10 / 100$ more/less, which place value columns does this effect?
- Which digit/s changes when you find 10 more?
- What is the same and what is different about finding $1 / 10 / 100$ more and $1 / 10 / 100$ less?

Stem Sentences:

can be made using \qquad hundred counters, \qquad ten counters and \qquad one counters. is made up of \qquad hundreds, \qquad tens and \qquad ones.
\qquad more/less than \qquad is \qquad
\qquad
-
is \qquad more/less than \qquad -.

- When finding \qquad more/less than a number, the \qquad digit/s changes.

Maths - Place Value

YEAR 3 Term 1

Small Steps:

1. Represent numbers to 100 .
2. Partition numbers to 100 .
3. Number line to 100 .
4. Hundreds.
5. Represent numbers to 1000.
6. Partition numbers to 1000 .
7. Flexible partitioning of numbers to 1000 .
8. Hundreds, tens and ones.
9. Find 1,10 or 100 more or less. $+$
10. Number line to 1000 .
11. Estimate on a number line to 1000.
12. Compare numbers to 1000 .
13. Order numbers to 1000.
14. Count in 50 's.

Key Questions:

- What is the start point? What is the end point?
- How many intervals are there? What is each interval worth?
- What is the number line counting up in? How do you know?
- Where would \qquad be on the number line? How do you know?
- What number would be halfway along the number line? How do you now?
- What is the number line counting up in? How do you know?
- Where would \qquad be on the number line? How do you know?
- Is \qquad closer to \qquad or \qquad ? How do you know?
- Why can you only estimate?
- What number is halfway between \qquad and \qquad ?
- How accurate do you think your estimate is? How could you be more accurate?

Stem Sentences:

Key
 Vocabulary:

number line thousand start point end point values
divisions intervals estimate position numbers intervals factors multiples halfway

- The start point is \qquad and the end point is \qquad -
- There are \qquad intervals on the number line.
- Each interval is worth \qquad _.
- The number line is counting up in \qquad _.
is closer to \qquad than \qquad , so the position of \qquad on the number line is closer to \qquad than \qquad
is more/less than halfway along the interval, so the position of \qquad is
closer to \qquad _.

Maths - Place Value

YEAR 3

Small Steps:

1. Represent numbers to 100 .
2. Partition numbers to 100 .
3. Number line to 100 .
4. Hundreds.
5. Represent numbers to 1000.
6. Partition numbers to 1000 .
7. Flexible partitioning of numbers to 1000 .
8. Hundreds, tens and ones.
9. Find 1,10 or 100 more or less. $+$
10. Number line to 1000 .
11. Estimate on a number line to 1000.
12. Compare numbers to 1000.
13. Order numbers to 1000.
14. Count in 50's.

Which number is greater?

Write $<,>$ or = to make the statements correct.

Key Questions:

- How do you know which number is greater?
- Do you start comparing hundreds, tens or ones first? Why?
- What strategy did you use to compare the two numbers? Is this the same as or different from your partners?
- Are the base 10 and place value counters show the same number? How do you know?
- Can you show each number using base 10 ?
- What is the same about each number? What is different?
- Which number is the greatest? Which number is the smallest? How do you know?
- When comparing two numbers, if the first digits are equal in value, what do you look at next?
- What is different about comparing numbers with the same number of digits and comparing numbers with different number of digits?

Stem Sentences:

\qquad is greater than \qquad because...
\qquad is less than \qquad because...

- When comparing numbers, I start with the \qquad place value column. If they are the same, I will look at the \qquad place value column.
\qquad hu
- The numbers are ordered from smallest to greatest. They are in \qquad order.
- The numbers are ordered from greatest to smallest. They are in \qquad order.

Key
 Vocabulary:

greater
smaller
compare
number line
place value chart highest lowest value
Hundreds
tens
ones
order
greatest
smallest
ascending
descending column
same
different

Maths - Place Value

Small Steps:

1. Represent numbers to 100 .
2. Partition numbers to 100.
3. Number line to 100.
4. Hundreds.
5. Represent numbers to 1000 .
6. Partition numbers to 1000 .
7. Flexible partitioning of numbers to 1000 .
8. Hundreds, tens and ones.
9. Find 1,10 or 100 more or less. +
10. Number line to 1000 .
11. Estimate on a number line to 1000 .
12. Compare numbers to 1000 .
13. Order numbers to 1000.
14. Count in 50 's.

Complete the number line.

Key Questions:

- What is the same about counting in 5 s and counting in 50s?
- What is different about counting in 5 s and counting in 50s?
- What is the connection between the 5 times-table and the 50 timestable?
- What patters do you notice?
- When counting in 50 s from zero, will you ever say a number with
\qquad tens? How do you know?

Stem Sentences:

- When counting in 50 s , the number before/after \qquad is \qquad _ .
- 50 more/less than \qquad is
\qquad , then 50 lots of \qquad is \qquad -.

Esther has made a number track for counting in 5 s .

Ben has made a number track for counting in 50 s.

What is the same about their number tracks? What is different?

YEAR 3 Term 1

Key
 Vocabulary:

fifty's count

5 times-table 10 times the size zero
forwards backwards
multiple
thousand
number lines number tracks counting same different connection patterns tens
after
before
more
less
lots of

Maths - Addition and Subtraction

Small Steps:

1. Apply numbers bonds within 10
2. Add and subtract 1 s .
3. Add and subtract 10 s .
4. Add and subtract 100 s .
5. Spot the pattern.
6. Add 1 s across a 10.
7. Add 10 s across a 100.
8. Subtract 1 s across a 10.
9. Subtract 10 s across a 100.
10. Make connections.
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.

Annie has 9 double-sided counters.
-000**०००
She turns over one counter and sees the number fact $8+1=9$

-0000***

What other number facts are there for the number 9 ?

18. Subtract a 2-digit number from a 3digit number.
19. Complements to 100
20. Estimate answers.
21. Inverse operations.
22. Make decisions.

- If the whole is \qquad and one part is \qquad then the other part is
\qquad $+$ \qquad $=10$ so \qquad $+$ \qquad $=100$.
- If I know that \qquad $+$ \qquad $=$ \qquad then I also know...

Maths - Addition and Subtraction

Small Steps:

1. Apply numbers bonds within 10
2. Add and subtract 1 s .
3. Add and subtract 10 s.
4. Add and subtract 100 s.
5. Spot the pattern
6. Add 1 s across a 10
7. Add 10 s across a 100.
8. Subtract 1 s across a 10
9. Subtract 10s across a 100
10. Make connections
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from a 3-digit number.
19. Complements to 100 .
20. Estimate answers.
21. Inverse operations.

22. Make decisions

Key Questions:

- Do you have enough ones to make an exchange?
- What happens to any number when you add a 1 -digit number?
- What happens to any number when you subtract a 1 -digit number?
- Which columns change in a number when you add or subtract a 1 digit number?
- Will more than one column ever change?
- What is the value of the digit \qquad in the number \qquad ?
- How many tens/hundreds are there in ____?
- How many tens/hundreds are you adding/subtracting?
- Will the value in the tens/hundreds column increase or decrease? By how much?
- Which place value columns have changed/stayed the same?
- If you know 7 ones minus 3 ones is equal to 4 ones, then what is 7 tens minus 3 tens?
- What is the inverse of adding/subtracting?
- If you know that $3+4=7$, what is $300+400$?

Stem Sentences:

\qquad ones plus/minus \qquad ones is equal to \qquad ones.

- When adding or subtracting 1 s to or from a number, the digit in the always changes.
- If I know $3+6=9$, then I know that $123+6=$ \qquad
- There are ___ hundreds, \qquad tens and \qquad ones
- ___ tens/hundreds plus/minus \qquad tens/hundreds is equal to \qquad tens/hundreds.
- The tens/hundreds column will increase/decrease by ___ _.

2-digit
3-digit
tens
hundreds
column
place value ones added subtracted exchange equal
multiples of 10
multiples of 100
number bonds
increase decrease
minus
plus
\qquad column

YEAR 3

Key
 Vocabulary:

Maths - Addition and Subtraction

Key Questions:

- What is the value of the digit \qquad in the number
- $444-3=$ \qquad
- $444-30=$ \qquad
- $444-300=$ \qquad
- Will the value in the ones/tens/hundreds column increase or decrease? By how much?
- Which place value columns have changed/stayed the same? Why?

YEAR 3

Key
 Vocabulary:

adding
subtracting

- If you know $3+4=7$, what else do you know?
- What is the inverse of adding/subtracting \qquad ? same multiples
- Will you get the same result if the operations are ones performed in a different order?
tens hundreds place value column number bonds increase decrease

14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from a 3-digit number.
19. Complements to 100.
20. Estimate answers.
21. Inverse operations.

22. Make decisions.

Maths - Addition and Subtraction

YEAR 3

Small Steps:

1. Apply numbers bonds within 10 .
2. Add and subtract 1 s .
3. Add and subtract 10 s.
4. Add and subtract 100 s.
5. Spot the pattern.
6. Add 1 s across a 10
7. Add 10 s across a 100 .
8. Subtract 1 s across a 10
9. Subtract 10s across a 100
10. Make connections
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from a 3-digit number.
19. Complements to 100 .
20. Estimate answers.
21. Inverse operations.
22. Make decisions

Work out the additions
$237+1>237+2>237+3>237+4>237+5$

Key Questions:

- What is the next multiple of $10 / 100$ after \qquad ?
- How can you partition \qquad ?
- What number do you add to \qquad to make $10 / 100$?
- What is the jump from \qquad to the next multiple of 10 ?
\qquad
- If \qquad is a part/jump, what is the other part/jump \qquad ?
- Which columns have changed/stayed the same?
- Does the \qquad column always/sometimes/never change?
- Which method do you prefer?
- Which method is more efficient?

Key

 Vocabulary:addition subtraction
1-digit

2-digit
3-digit crossing 10 number bonds multiple of 10 partition number line ten hundred multiple of 100 place value columns always sometimes
change

Stem Sentences:

- The next multiple of 10 after \qquad is \qquad
\qquad
- ___ can be partitioned into \qquad and \qquad
- I need to add ___ to get to the next 10, and then add another \qquad -
- The next multiple of 100 after \qquad is \qquad _.
- I need to add \qquad to cross the next 100 and then add another \qquad .

Maths - Addition and Subtraction

YEAR 3

Small Steps:

1. Apply numbers bonds within 10.
2. Add and subtract 1 s .
3. Add and subtract 10 s.
4. Add and subtract 100s.
5. Spot the pattern.
6. Add 1 s across a 10
7. Add 10 s across a 100.
8. Subtract 1 s across a 10
9. Subtract 10 s across a 100 .
10. Make connections
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2 -digit number from a 3-digit number.
19. Complements to 100 .
20. Estimate answers.
21. Inverse operations
22. Make decisions

Key Questions:

- What is the previous multiple of $10 / 100$ before \qquad ?
- How can you partition \qquad ?
- What is the jump from \qquad to the previous multiple of 10/100?
- If \qquad is a part/jump, what is the other part/jump \qquad ?
- Which columns have changed/stayed the same?
- Which method do you prefer?
- Which is more efficient?

Scott's method

Whitney's method

Stem Sentences:

- The previous multiple of 10 before \qquad is \qquad -.
nd \qquad .
- can be partitioned into \qquad to get to the previous multiple of 10 , then
- I need to subtract \qquad subtract \qquad more.
- The multiple of 100 before \qquad is \qquad .
- ___ can be partitioned into ___ and \qquad .
- I need to subtract ____ to get to the previous multiple of 100 , then subtract
\qquad _ more.

Maths - Addition and Subtraction

Small Steps:

1. Apply numbers bonds within 10 .
2. Add and subtract 1 s .
3. Add and subtract 10 s.
4. Add and subtract 100 s.
5. Spot the pattern
6. Add 1 s across a 10.
7. Add 10 s across a 100 .
8. Subtract 1 s across a 10
9. Subtract 10 s across a 100.
10. Make connections
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from a 3-digit number.
19. Complements to 100.
20. Estimate answers.
21. Inverse operations.
22. Make decisions

Key Questions:

- What is the multiple of $10 / 100$ after \qquad ?
- What is the multiple of $10 / 100$ before \qquad ?
- What is the jump from \qquad to the next/previous multiple?
- If ___ is a part/jump, what is the other part/jump?
- Which columns have changed/stayed the same?
- Which method do you prefer?
- Which is more efficient?

YEAR 3

Key

Vocabulary:
adding
subtracting
1s
10s
100s
tolfrom
3-digit numbers cross a 10 or a 100
connections calculations
ones
equal
tens
Hundreds
multiple next
previous
part
jump
columns changed

\qquad ones + \qquad ones $=$ \qquad ones, so \qquad ones stayed same

Maths - Addition and Subtraction

YEAR 3

Small Steps:

1. Apply numbers bonds within 10 .
2. Add and subtract 1 s .
3. Add and subtract 10 s .
4. Add and subtract 100 s.
5. Spot the pattern
6. Add 1 s across a 10
7. Add 10 s across a 100.
8. Subtract 1 s across a 10
9. Subtract 10 s across a 100
10. Make connections.
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from a 3-digit number.
19. Complements to 100 .
20. Estimate answers.
21. Inverse operations.
22. Make decisions.

Find the sum of 345 and 432

Work out 769-147

Work out the missing numbers.

Key Questions:

- Do you have enough ones/tens to exchange for a ten/hundred?
- Do you need to make an exchange?

Key

Vocabulary:
addition subtraction written

- How can you represent the question using base 10 ? 2-digit
3-digit
- How can you partition these numbers into a place value formal written method chart?
- Does it matter which columns you add together first?
- What do you put in the tens column if there are no tens?
- Do you need to make both numbers before you subtract?
- Does it matter which column you subtract from first?
place value chart

subtract

base 10
exchange

- Do you have enough ones/tens to subtract ____ones/tens?
ones
- Does it matter which number you write at the top when using the column method for subtraction?
tens
hundreds partition columns equal to

Stem Sentences:

\qquad ones plus \qquad ones is equal to \qquad ones.
\qquad tens plus \qquad tens is equal to \qquad tens.hundreds plus \qquad hundreds is equal to \qquad hundreds.hundreds, \qquad tens and \qquad ones is equal to \qquad

- ___ ones/tens/hundreds minus \qquad ones/tens/hundreds is equal to \qquad ones/tens/hundreds.
- Now there are \qquad hundreds, \qquad tens and \qquad ones. The answer is

Maths - Addition and Subtraction

YEAR 3

Key Vocabulary:

Small Steps:

1. Apply numbers bonds within 10 .
2. Add and subtract 1 s .
3. Add and subtract 10 s .
4. Add and subtract 100 s.
5. Spot the pattern
6. Add 1 s across a 10
7. Add 10 s across a 100.
8. Subtract 1 s across a 10
9. Subtract 10s across a 100
10. Make connections
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from a 3-digit number.
19. Complements to 100 .
20. Estimate answers.
21. Inverse operations.

Dexter uses base 10 to work out $208+313$

22. Make decisions.

Key Questions:

- Does it matter which column's numbers you add together first?
- Do you have enough ones/tens to make an exchange?
- Where do you put the ten/hundred that you made from exchanging 10 ones/10 tens in your model?
add addition adding 2-digit 3-digit exchanges
- How can you show that you have exchanged 10 ones/10 tens in your written calculation?
hundreds base 10 place value counters/chart column value written method calculation

Nijah uses base 10 to work out $466+353$

Stem Sentences:

\qquad ones \qquad ones = \qquad ones.

- If I hav \qquad ones, I can exchange them for \qquad ten and \qquad ones.
- I have ___ hundreds, ___ tens and \qquad ones, so altogether I have \qquad .
- ___ tens + \qquad tens $=$ \qquad tens.
- If I have \qquad tens, I can exchange them for \qquad hundred and \qquad tens.
- I have \qquad hundreds \qquad tens and \qquad ones, so altogether I have \qquad

Maths - Addition and Subtraction

YEAR 3

Small Steps:

1. Apply numbers bonds within 10 .
2. Add and subtract 1 s .
3. Add and subtract 10 s .
4. Add and subtract 100 s.
5. Spot the pattern.
6. Add 1 s across a 10
7. Add 10 s across a 100.
8. Subtract 1 s across a 10
9. Subtract 10 s across a 100.
10. Make connections.
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).

Annie uses base 10 to work out 72-45

Key Questions:

- How can you show this questions using base 10?
- Can you subtract 2 ones/tens from 5 ones/tens?
- Can you subtract 5 ones/tens from 2 ones/tens?
- Do you need to make an exchange?
- How can you show an exchange using base 10 or place value counters?
- How can you show an exchange using the written method?

ones hundreds base 10 calculation
across a 100
place value counters multiples

13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from n 3-digit number.
19. Complements to 100.
20. Estimate answers.
21. Inverse operations.
22. Make decisions

\qquad Stentences: ones subtract ones is equal to \qquad ones.

- I will exchange 1 ten for \qquad ones.
- Now I have \qquad hundreds, \qquad tens and \qquad ones.
- The answer is \qquad _.
\qquad tens subtract \qquad tens is equal to \qquad —.
- I will exchange 1 hundred to make \qquad tens.
- Now there are \qquad hundreds, \qquad tens and \qquad ones.
- The answer is \qquad .
\qquad震 (20)

Maths - Addition and Subtraction

Key Questions:

- How can you show this question using base $10 /$ place value counters?
- How can you write this calculation using the formal written method?
- Have you put all the digits in the correct columns?
- Do you need to make an exchange?
- What could you write in the hundreds column if there are no hundreds?
- If you cannot exchange from the tens, what should you do?

Eva uses base 10 to work out 203-36

Stem Sentences:

- ___ hundreds added to \qquad hundreds is equal to \qquad hundreds.
- I put \qquad in the \qquad column because...
- ___ hundreds subtract \qquad hundreds is equal to \qquad
\qquad ones.
- I will exchange 1 hundred for ___ tens, then 1 tens for \qquad
\qquad

YEAR 3

Key

Vocabulary:
formal written method addition add plus subtraction subtract minus 2-digit 3-digit exchange/s ones hundreds digits place value columns zero placeholder absence
two-part exchange equal to

Maths - Addition and Subtraction

YEAR 3

Small Steps:

1. Apply numbers bonds within 10 .
2. Add and subtract 1 s .
3. Add and subtract 10 s.
4. Add and subtract 100 s.
5. Spot the pattern
6. Add 1 s across a 10
7. Add 10 s across a 100.
8. Subtract 1 s across a 10
9. Subtract 10 s across a 100
10. Make connections.
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from a 3-digit number.
19. Complements to 100 .
20. Estimate answers.
21. Inverse operations. Complete the complements to 100
22. Make decisions

Fill in the totals for the hundred square.

Key Questions:

- How many squares are there altogether? How do you know?
- How many full rows of each colour are there?
- What do you notice about the row with both colours in it?
- What do you notice about the total of the tens?
- What do you notice about the total of the ones?
- What is the jump to the next multiple of 10 ?
- What is the jump to 100 ?

Key

Vocabulary:

complements to 100 numbers bonds

ones

tens hundreds number line altogether multiples

Sort the additions into the table.

Stem Sentences:

- I add \qquad to get to the next 10, then \qquad to get to 100 .
- This means \qquad is the complement to 100 of \qquad

$$
84+1 _\quad>35+\ldots 5 \quad>\ldots 7+53 \quad>26+\ldots
$$

- ___ plus \qquad is equal to 100 .

Maths - Addition and Subtraction

YEAR 3

Small Steps:

1. Apply numbers bonds within 10 .
2. Add and subtract 1 s .
3. Add and subtract 10 s.
4. Add and subtract 100 s.
5. Spot the pattern
6. Add 1 s across a 10
7. Add 10 s across a 100.
8. Subtract 1 s across a 10
9. Subtract 10 s across a 100
10. Make connections
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from a 3-digit number.
19. Complements to 100 .
20. Estimate answers.
21. Inverse operations.
22. Make decisions.

Key Questions:

- What are the multiples of $10 / 100$ before and after
\qquad
- Where would \qquad be on this number line?
- Which multiple is \qquad closer to?
- How far from \qquad is _?
- Which calculation is easier/quicker to perform?
- Which calculations can you do mentally?
- Why do we use estimates?
- Is the estimate less than or greater than the actual answer?
- Why?
Tiny is estimating the answer

Use the number lines to help you complete the sentences.

$$
\text { to } 382-114
$$

Key

Vocabulary:

rounding estimating position numbers number line answer near to calculated greater less than multiples before after closer mentally

Stem Sentences:

is near to \qquad

- The estimated answer will be less/greater than the actual answer because...

Maths - Addition and Subtraction

YEAR 3

Small Steps:

1. Apply numbers bonds within 10 .
2. Add and subtract 1 s .
3. Add and subtract 10 s .
4. Add and subtract 100 s.
5. Spot the pattern.
6. Add 1 s across a 10
7. Add 10 s across a 100.
8. Subtract 1 s across a 10
9. Subtract 10 s across a 100
10. Make connections
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from a 3-digit number
19. Complements to 100 .
20. Estimate answers.
21. Inverse operations
22. Make decisions

Key Questions:

- What do you notice about the part-whole models?
- What are the two parts? What is the whole?
- What does 'inverse' mean?
- What is the inverse of add/subtract \qquad ?
- What does commutative mean?
- Is addition/subtraction commutative?
- What estimate could you use to check?

Key

Vocabulary:

Complete the bar model for 561-236=325

Aisha works out 83-47 and gets the answer 36

Stem Sentences:

- If \qquad is a part and \qquad is a part, then \qquad is the whole.
- If \qquad is the whole and \qquad is a part, then \qquad is the other part.

What mistake has Dexter made?

Maths - Addition and Subtraction

Small Steps:

1. Apply numbers bonds within 10.
2. Add and subtract 1 s .
3. Add and subtract 10 s.
4. Add and subtract 100 s.
5. Spot the pattern
6. Add 1 s across a 10
7. Add 10 s across a 100 .
8. Subtract 1 s across a 10
9. Subtract 10 s across a 100
10. Make connections
11. Add two numbers (no exchange).
12. Subtract two numbers (no exchange).
13. Add two numbers (across a 10)
14. Add two numbers (across a 100)
15. Subtract two numbers (across a 10)
16. Subtract two numbers (across a 100)
17. Add 2-digit and 3-digit numbers.
18. Subtract a 2-digit number from a 3-digit number.
19. Complements to 100 .
20. Estimate answers.
21. Inverse operations.
22. Make decisions

Match the bar models to the problems.

Esther has 24 stickers. Filip has 13 stickers. Tom has 48 stickers. How many stickers do they have altogether?

Esther has 24 stickers. Filip has 13 stickers. Tom has 48 stickers. How many more stickers does Tom have than Esther and Filip combined?

Esther has 24 sticker Filip has 13 stickers. Tom has 48 stickers. Find the difference between Filip and Tom's numbers of stickers.

Use the cards to create additions and subtractions that give an answer between 200 and 300

Key Questions:

- Do you know the whole?
- What parts do you know?
- Which operation do you need to use?
- Can you use a mental method or do you need to use a written one?
- Which method is more efficient?
- What does this arrow represent on the bar model?
- Where is the whole/total on the bar model?
- What is the first step you need to do?
- Do you have to complete the calculations in a specific order?

Kim and Teddy are working out 436-199

Use both methods to work out the answer.

Stem Sentences:

is a part and \qquad is a part, so I need to \qquad
\qquad
\qquad

YEAR 3

Key

Vocabulary:
decisions operation method solve problem word problems multi-step problems bar model whole parts total mental written efficient represent calculations is the whole and \qquad is a part, so I need to .

Maths - Multiplication and Division A

YEAR 3

Small Steps:

1. Multiplication - equal groups.
2. Use arrays.
3. Multiples of 2.
4. Multiples of 5 and 10 .
5. Sharing and grouping
6. Multiply by 3.
7. Divide by 3 .
8. The 3 times-table.
9. Multiply by 4.
10. Divide by 4
11. The 4 times-table.
12. Multiply by 8 .
13. Divide by 8
14. The 8 times-table.
15. The 2,4 and 8 times-tables.

Complete the sentences to describe the groups

There are \qquad equal groups with \qquad in each group.

There are___ altogether.

Complete the sentences.

\qquad There are___ lots of ___ apples.
\qquad
\qquad $=$

- There are___ columns of \qquad
There are \qquad lots of \qquad apples.
\qquad \times $=$ \qquad

Key Questions:

- How can you tell if groups are equal?
- What does the 2 represent? What does the 8 represent?
- How can you show the groups?
- What is the same and what is different about the groups?
- How many ways can you show this?
- Do these two groups look the same? Why or why not?
- How many lots of 2 do you have?
- How many lots of 5 do you have?
- What does this array show?
- What number sentences can you write to describe this array?

Key
 Vocabulary:

equal groups repeated addition multiplication times-table facts represent same
different arrays
Commutativity lots of groups of

- How does this array show repeated addition and multiplication?
- What happens if you change the order of the numbers in a multiplication?

Stem Sentences:

- There are \qquad equal groups with \qquad in each group. There are \qquad altogether.
- The groups are equal because...
- There are \qquad lots of \qquad
\qquad
- X \qquad
\qquad
\qquad -.

Maths - Multiplication and Division A

YEAR 3

Small Steps:

1. Multiplication - equal groups.
2. Use arrays.
3. Multiples of 2.
4. Multiples of 5 and 10 .
5. Sharing and grouping.
6. Multiply by 3 .
7. Divide by 3
8. The 3 times-table.
9. Multiply by 4.
10. Divide by 4
11. The 4 times-table.
12. Multiply by 8 .
13. Divide by 8.
14. The 8 times-table.
15. The 2,4 and 8 times-tables.

Colour the multiples of 2 in the grid.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50

Sort the numbers into the diagram.

$$
\begin{array}{cccccc}
15 & 90 & 27 & 95 & 105 & 40 \\
700 & 740 & 57 & 605 & 406 & 50
\end{array}
$$

The first three have been done for you.

Key Questions:

- What is the next multiple of 2 ?
- What is the multiple of 2 before \qquad ?
- How do you know that all multiples of 2 are even?
- What do you notice when you add two even numbers together? Is this always true?
- What do you notice when you add two odd numbers together? Is this always true?
- What is the next multiple of $5 / 10$?
- What is the multiple of $5 / 10$ before \qquad ?
- What do you notice about the multiples of 5 and 10 ?
- When is a multiple of 5 also a multiple of 10 ?
- Is \qquad a multiple of $5 / 10$? How can you tell?
- Are all multiples of 10 even? How do you know?

- Complete the number line

Stem Sentences:

- The next multiple of 2 is \qquad

Key

 Vocabulary:
2s

2 times-table multiples divided
equal groups even odd
whole number
ones
tens
hundreds digits
next
after before previous

- The previous multiple of 2 is \qquad
- I know \qquad is even because...
- The next multiple of $5 / 10$ is \qquad
- The previous multiple of $5 / 10$ is \qquad
- I know \qquad is a multiple of $5 / 10$ because...

Maths - Multiplication and Division A

YEAR 3

Small Steps:

1. Multiplication - equal groups.
2. Use arrays.
3. Multiples of 2.
4. Multiples of 5 and 10 .
5. Sharing and grouping
6. Multiply by 3.
7. Divide by 3 .
8. The 3 times-table.
9. Multiply by 4.
10. Divide by 4
11. The 4 times-table.
12. Multiply by 8 .
13. Divide by 8
14. The 8 times-table.
15. The 2,4 and 8 times-tables.

Match the statements to the bar models.

```
20 pencils are shared
equally between 5 people
20 pencils are shared
equally between 5 people
equally between 5 people.
```


Key Questions:

- How can you share \qquad into \qquad equal groups?

Key Vocabulary:

division sharing grouping equally groups bar model

- Eva puts 30 apples into bags.

Each bag has 5 apples in it.
How many bags are there?
Draw a bar model to show this problem.

Are the statements about sharing or grouping?

Teddy puts pencils into pots. He has 25 pencils and puts 5 pencils in each pot.

Filip has 15 books. He gives each of his friends an equal number of books.

Stem Sentences:

- ___ has been shared equally into \qquad equal groups.
- There are \qquad groups of \qquad in \qquad equal groups.
- This question is sharing/grouping because.

Maths - Multiplication and Division A

Small Steps:

1. Multiplication - equal groups.
2. Use arrays.
3. Multiples of 2.
4. Multiples of 5 and 10 .
5. Sharing and grouping
6. Multiply by 3.
7. Divide by 3 .
8. The 3 times-table.
9. Multiply by 4.
10. Divide by 4.
11. The 4 times-table.
12. Multiply by 8 .
13. Divide by 8
14. The 8 times-table
15. The 2,4 and 8 times-tables.

Arrange the counters in groups of 3 and complete the division

- There are 5 towers.

Each tower has 3 cubes.
Complete the sentences.

```
There are ___ equal groups with ___ in each group.
There are ___ altogether.
```

\qquad

```
\(L^{\times} \times{ }^{\circ}=\)
- Whitney and Tommy are working out \(6 \times 3\)
```


Whose method is more efficient?

18		
6	6	6

Key Questions:

- How many equal groups are there?
- How many are in each group?
- How could you show this multiplication using a bar model?
- How could you use counters to explore the problem?
- How many lots/groups of 3 do you have?
- How many will go into each group?
- How many groups of 3 can you make?
- How can you show me sharing?
- How can you show me grouping?
- Is the question sharing or grouping? How do you know?
- How can you show this using an array?
- What would one more lot be?
- What would double the number of lots be?
- If you know this, what else do you know?
- How could you partition the array to show different groups of 3 ?

Stem Sentences:

- There are \qquad groups
- There are \qquad in each group
- There are ___ altogether.
- \quad x $3=$ \qquad $3+$ \qquad x 3
\qquad has been shared equally into \qquad equal groups.
- There are \qquad groups of \qquad in \qquad .
- There are ___ lots of 3 . \qquad .
- ___ lots of 3 is equal to

YEAR 3

Key

Vocabulary:

3s

repeated addition
multiplication multiples equal groups multiplying counting partitioning bar model lots of groups of dividing division sharing grouping inverse operations times-table fact families doubling halving commutativity inverse operation

Maths - Multiplication and Division A

Small Steps:

1. Multiplication - equal groups.
2. Use arrays.
3. Multiples of 2.
4. Multiples of 5 and 10 .
5. Sharing and grouping
6. Multiply by 3.
7. Divide by 3 .
8. The 3 times-table.
9. Multiply by 4.
10. Divide by 4
11. The 4 times-table.
12. Multiply by 8 .
13. Divide by 8
14. The 8 times-table.
15. The 2,4 and 8 times-tables.

- Here are 20 buttons.

Match the multiplications to the pictures

4×4

8888
8888
8888888
8888888
888888
888888

Key Questions:

- How many equal groups are there?
- How many are in each group?
- How can you write a number sentence to show this?
- How many lots of 4 do you have?
- How can you show why multiplying by 4 is the same a multiplying by 2 and then by 2 again?
- How can you share ____ into 4 equal groups?
- How can you put \qquad into equal groups of 4?
- What is the difference between sharing and grouping?
- Is this question asking you to share the ___ or group them? How do you know?
- How can you show that dividing by 4 is the same as dividing by 2 and then by 2 again?
- What does your answer represent?
- What can you partition \qquad into to help you multiply \qquad by 4?
- What strategy can you use when multiplying by 4 ?
- What strategy can you use when dividing by 4?

Stem Sentences:

- There are \qquad equal groups with \qquad in each group.
- There are \qquad altogether.
- Double \qquad is \qquad and double \qquad is \qquad so 4 lots of \qquad is \qquad
\qquad
- ___ has been shared into ___ equal groups.
- There are \qquad groups of \qquad in \qquad _.
\qquad $\times 4=$ \qquad $\times 4$ + \qquad $\times 4$

YEAR 3

Key

Vocabulary:

2's
times-table
multiply
4s
arrays
multiplying doubling

5's
lots of
minus
equal groups counting
commutativity groups number sentence sharing grouping dividing halving partitioning subtracting

Maths - Multiplication and Division A

Small Steps:

1. Multiplication - equal groups.
2. Use arrays.
3. Multiples of 2.
4. Multiples of 5 and 10 .
5. Sharing and grouping
6. Multiply by 3.
7. Divide by 3 .
8. The 3 times-table.
9. Multiply by 4.
10. Divide by 4
11. The 4 times-table.
12. Multiply by 8 .
13. Divide by 8
14. The 8 times-table.
15. The 2,4 and 8 times-tables.

- Complete the sentences to describe each picture.

There are ___ bags of pears.

There are ___ pears in each bag.
There are ___ pears in total.

Key Questions:

- How many equal groups are there?
- How many are in each group?
- How can you write a number sentence to show this?
- How many lots of 8 do you have?
- How many groups of 8 are there in \qquad ?
- What is the relationship between multiplying by 4 and multiplying by 8 ?
- How can you share \qquad into 8 equal groups?
- How can you put \qquad into equal groups of 8 ?
- What is the difference between sharing and grouping?
- Is this question asking you to share the \qquad or group them? How do you know?
- How can you show that dividing by 8 is the same as dividing by 2 three times?
- What can you partition \qquad into to help you multiply \qquad by 8 ?
- What strategy can you use when multiplying/dividing by 8 ?

Stem Sentences:

- There are \qquad equal groups with \qquad in each group.
- There are \qquad altogether.
\qquad , then \qquad $\times 8=$ \qquad
- ___ has been shared into \qquad equal groups.
- There are \qquad groups of \qquad in \qquad —.
\qquad $\times 8=$
\qquad $\times 8+$ \qquad x 8

YEAR 3

Key

Vocabulary:

4s
times-table multiply 8s
equal groups counting multiplying double equivalent same multiple lots of subtracting commutativity multiplication equal to division sharing grouping dividing halving partitioning greater than

Maths - Multiplication and Division A

Small Steps:

1. Multiplication - equal groups.
2. Use arrays.
3. Multiples of 2.
4. Multiples of 5 and 10
5. Sharing and grouping
6. Multiply by 3.
7. Divide by 3 .
8. The 3 times-table.
9. Multiply by 4.
10. Divide by 4
11. The 4 times-table.
12. Multiply by 8 .
13. Divide by 8
14. The 8 times-table.
15. The 2,4 and 8 times-tables.

- Complete the multiplications
- $3 \times 2=$ \qquad 4
- $3 \times 4=$ \qquad (4)

\qquad

Key Questions:

- How does knowing ___ $\times 2$ help you work out \qquad x 4 and \qquad $x 8$?
- What is the relationship between multiplying by 4 and multiplying by 8?
- How can you show that multiplying by 4 is the same a multiplying by 2 and then by 2 again?
- How can you show that dividing by 4 is the same as dividing by 2 and then by 2 again?

YEAR 3

Key

Vocabulary:

multiplying

Use Tiny's method to complete the calculations.

Is the statement true or false?

```
Multiples of 8 are also
    multiples of 4 and 2
```


Match the equivalent calculations.

Maths - Multiplication and Division B

Small Steps:

1. Multiples of 10 .
2. Related calculations.
3. Reasoning about multiplication.
4. Multiply a 2-digit number by a 1-digit number - no exchange.
5. Multiply a 2-digit number by a 1-digit number - with exchange.
6. Link multiplication and division.
7. Divide a 2-digit number by a 1 digit number - no exchange.
8. Divide a 2-digit number by a 1-digit number - flexible partitioning.
9. Divide a 2-digit number by a 1 digit number - with remainders.
10. Scaling
11. How many ways?

Complete the number track

Key Questions:

- What is the multiple of 10 before \qquad ?
- What is the multiple of 10 after \qquad
- Is \qquad a multiple of 10 ? How can you tell?
- How many tens are there in?
- How can you use a Gattegno chart/place value chart to help multiply or divide a number by 10 ?
- What is the same about all multiples of 10 ?
- What is different?
- What is the same and what is different about the two calculations?
- How can you represent the calculation using place value counters/base 10 ?
- How is multiplying by 10 's different from multiplying by 1's?
- What is the connection between the two calculations?

Stem Sentences:

- I know \qquad is a multiple of 10 because...
- ___ multiplied by 10 is equal to \qquad .
- is is 10 times the size of . ,
- There are \qquad tens in \qquad
\qquad ones, so \qquad x
\qquad x ones is equal to tens. nes, so x
\qquad tens is equal to \qquad tens. , so \qquad tens \div is equal to
\qquad
\qquad is equal to \qquad -

Key
 Vocabulary:

10s
times table
multiples greater
place value ten frame
Gattegno chart zero
multiplication division
2-digit before after tens multiply divide same different equal
times the size scaling base 10 commutative

Maths - Multiplication and Division B

Small Steps:

1. Multiples of 10 .
2. Related calculations.
3. Reasoning about multiplication
4. Multiply a 2-digit number by a 1 -digit number - no exchange.
5. Multiply a 2-digit number by a 1-digit number - with exchange.
6. Link multiplication and division.
7. Divide a 2-digit number by a 1 digit number - no exchange.
8. Divide a 2-digit number by a 1-digit number - flexible partitioning
9. Divide a 2-digit number by a 1 digit number - with remainders.
10. Scaling
11. How many ways?

Complete the number sentences to match the pictures.

Write > or < to complete the statement.

$$
6 \times 3 \bigcirc 6 \times 5
$$

Complete the number sentences and write $<$, > or = to compare the arrays.

How do the bar models show that $36 \div 6<36 \div 4$?

Draw bar models to compare the pairs of calculations.

Key Questions:

- What number sentences are shown by the array?
- What is the same and what is different about 8×3 and 8×4 ?
- Which digit represents the size of the group?
- Which digit refers to the number of groups?
- What happens if you increase/decrease the number of groups?
- What happens if you increase/decrease the size of the groups?
- Do you need to complete the calculation to compare them?

Write $<,>$ or $=$ to compare the multiplications.

Stem Sentences:

\qquad lots of \qquad is greater than \qquad lots of \qquad —.
\qquad lots of \qquad is less than \qquad lots of \qquad -

- I know that \qquad is greater because....

Key
 Vocabulary:

multiplication base 10 arrays
number sentence symbols
greater than less than equal to division
same
different digit groups increase decrease compare

Maths - Multiplication and Division B

YEAR 3

Small Steps:

1. Multiples of 10 .
2. Related calculations.
3. Reasoning about multiplication.
4. Multiply a 2-digit number by a 1-digit number - no exchange.
5. Multiply a 2-digit number by a 1-digit number - with exchange.
6. Link multiplication and division.
7. Divide a 2-digit number by a 1 digit number - no exchange.
8. Divide a 2-digit number by a 1-digit number - flexible partitioning.
9. Divide a 2-digit number by a 1 digit number - with remainders.
10. Scaling
11. How many ways?

Complete the number sentences.
Use the place value chart to help you.

Tens	Ones
ण11110	De
T11110	
W11014	
पा1T1T10	P-
W11111	
\#11110	

3 tens $\times 2$	$=$
2 ones $\times 2$	$=$
+	tens
$+\ldots$	ones
32×2	$=$

Ron has used a part-whole model to multiply 23 by 3

Use the place value chart and counters to work out 45×3

Key Questions:

- How can you partition a 2-digit number into tens and ones?
- What is the product of the tens and the single digit?
- What is the product of the ones and the single digit?
- What do you need to do to find the final answer?
- What do you do if you have ten or more ones?

Complete the workings.

Stem Sentences:

- _ tens and \qquad ones multiplied by \qquad is equal to tens multiplied by \qquad and \qquad ones multiplied

Key
 Vocabulary:

multiplying 2-digit 1-digit calculation exchange partitioning expanded method
tens
ones
product base 10 place value part-whole number sentence single digit equal to

\qquad tens multiplied by \qquad is equal to \qquad ones multiplied by \qquad is equal to \qquad multiplied by \qquad
\qquad is equal to \qquad tens x \qquad $+$ \qquad x \qquad —.
\qquad \times $=$ \qquad tens and \qquad ones.

Maths - Multiplication and Division B

YEAR 3

Small Steps:

1. Multiples of 10 .
2. Related calculations.
3. Reasoning about multiplication.
4. Multiply a 2-digit number by a 1-digit number - no exchange.
5. Multiply a 2-digit number by a 1-digit number - with exchange.
6. Link multiplication and division.
7. Divide a 2-digit number by a 1 digit number - no exchange.
8. Divide a 2-digit number by a 1-digit number - flexible partitioning.
9. Divide a 2-digit number by a 1 digit number - with remainders.
10. Scaling
11. How many ways?

What multiplication and division facts does the array show?

\qquad
\qquad $=$
\qquad $-\times$ \qquad $=$
\qquad
\qquad $=$
\qquad
\qquad $=$

What multiplication and division facts does the array show?

What is the same and what is different about these arrays?

Key Questions:

- What is the same and what is different about the two calculations?
- How can you show the calculation using place value counters/base 10?
- How is multiplying by 10 's different from multiplying by 1s?
- What division facts do you know by using the fact
\qquad x $=$ _ ?

Tiny is working out $60 \div 3$

Use Tiny's method to work out the divisions.

$80 \div 4$	$90 \div 3$

Write $<$, > or = to compare the statements.

Stem Sentences:

Fill in the missing numbers.
\qquad

- \qquad x \qquad ones is equal to \qquad ones, so \qquad X \qquad tens is equal to \qquad tens.
- \square
\qquad is equal t \qquad SO \qquad tens \div \qquad is equal to \qquad tens.

Maths - Multiplication and Division B

YEAR 3

Small Steps:

1. Multiples of 10 .
2. Related calculations.
3. Reasoning about multiplication.
4. Multiply a 2-digit number by a 1-digit number - no exchange.
5. Multiply a 2-digit number by a 1-digit number - with exchange.
6. Link multiplication and division.
7. Divide a 2-digit number by a 1 digit number - no exchange.
8. Divide a 2-digit number by a 1-digit number - flexible partitioning
9. Divide a 2-digit number by a 1 digit number - with remainders.
10. Scaling
11. How many ways?

There are 63 crayons.

\qquad
Key Questions:

- What is \qquad partitioned into tens and ones?
- Share the crayons into three equal groups.

Dani uses place value counters to work out $39 \div 3$

Tens	Ones
\oplus	1
0	1
0	1

$39 \div 3-13$

Eva uses a part-whole model to work out $48 \div 4$ Complete Eva's workings.

Esther has 13 lolly sticks. She uses them to make squares.

Tommy uses repeated subtraction to work out $31 \div 4$
 shared into \qquad equal groups?

- How can the place value counters help you divide by \qquad ?
- How can you use the part-whole model to work out the division?
- What is \qquad divided by \qquad ?
- How can you flexibly partition \qquad and ones are both multiples of the number you are dividing by?
- Do you need to exchange any tens for ones?
- Is there a remainder?
- How do you know \qquad divided by \qquad remainder?
- Can a remainder ever be greater than the number you are dividing by?

Stem Sentences:

-

partitioned into tens and ones is \qquad ones.

- \qquad divided by \qquad is equal to \qquad
\qquad are both multiples of \qquad
\qquad and
- There are \qquad groups of \qquad
\qquad
ones so that the tens will have a

Key
Vocabulary:
times-tables
division facts
2-digit
1-digit
partitioning
tens
sharing
equal
groups
dividing
part-whole model exchanging
flexible partitioning multiples
repeated subtraction
remainder tens and \qquad notation as these numbers

- There are \qquad remaining.
- So \qquad
\qquad = \qquad r

Small Steps:

1. Multiples of 10 .
2. Related calculations.
3. Reasoning about multiplication.
4. Multiply a 2-digit number by a 1-digit number - no exchange.
5. Multiply a 2-digit number by a 1-digit number - with exchange.
6. Link multiplication and division.
7. Divide a 2-digit number by a 1 digit number - no exchange.
8. Divide a 2-digit number by a 1-digit number - flexible partitioning.
9. Divide a 2-digit number by a 1 digit number - with remainders.
10. Scaling
11. How many ways?

Maths - Multiplication and Division B

Complete the sentences to describe the fruit.

There are ___ bananas.
There are __ strawberries.
There are ___ times as many strawberries as bananas.

In a playground, there are 3 times as many girls as boys.

Which bar model shows the number of boys and girls? Explain your choice.

The green ribbon is 6 cm long.
The red ribbon is 3 times as long as the green ribbon.

How long is the red ribbon?
Complete the number sentence.
$6 \mathrm{~cm} \times$ \qquad
\qquad

Key Questions:

- What number is 10 times the size of \qquad ?
- What number is \qquad times the size of \qquad ?
- What length is \qquad times as long as \qquad
- What time is \qquad times as long as \qquad ?
- Which is the larger object? How many times larger is it?
- How can you show the problem as a bar model?

Dani, Amir and Jack are baking.

- Dani needs 40 g of butter
- Amir needs 3 times as much butter as Dani.
- Jack needs twice as much butter as Dani.

How much butter do they need altogether?

YEAR 3

Vocabulary:

multiplication scaling
repeated addition as many
times the size comparing

Maths - Multiplication and Division B

YEAR 3

Small Steps:

1. Multiples of 10 .
2. Related calculations.
3. Reasoning about multiplication.
4. Multiply a 2-digit number by a 1-digit number - no exchange.
5. Multiply a 2-digit number by a 1-digit number - with exchange.
6. Link multiplication and division.
7. Divide a 2-digit number by a 1 digit number - no exchange.
8. Divide a 2-digit number by a 1-digit number - flexible partitioning.
9. Divide a 2-digit number by a 1 digit number - with remainders.
10. Scaling
11. How many ways?

Huan has three T-shirts and four pairs of shorts.
Complete the table to show how many different outfits he can make.

Alex has four shape cards and two digit cards.

She chooses a shape and a digit.
Use a table to find all the different ways that she can do this.
How many different ways can you find?
How do you know that you have found them all?

Aisha is choosing a snack and a drink
How many possible combinations are there?

Key Questions:

- How can you show the possibilities in a table?
- In what order should you list the possibilities?
- Starting with \qquad how many combinations can you make?
- How do you know you have found all the ways?
- How many combinations are there if you have \qquad and \qquad ?

Ron has three hats and two scarves.

He chooses a hat and a scarf.
List all the possible combinations he can wear. Use a multiplication to work out the number of combinations. How many combinations are there if Ron buys four more scarves?

Stem Sentences:

- For every \qquad there are \qquad -
- There are \qquad x ___ = \qquad possibilities altogether
- For each \qquad there are \qquad choices of \qquad _.
- There are \qquad ways altogether.
- I know that I have found them all because...

Key
 Vocabulary:

problems combinations combining groups different multiplication total possibilities altogether

Maths - Fractions A

YEAR 3

Small Steps:

1. Understand the denominators of unit fractions.
2. Compare and order unit fractions.
3. Understand the numerators of non-unit fractions.
4. Understand the whole.
5. Compare and order non-unit fractions.
6. Fractions and scales.
7. Fractions on a number line.
8. Count in fractions on a number line.
9. Equivalent fractions on a number line.
10. Equivalent fractions as bar models.

Key Questions:

- Is the diagram split into equal parts? How many equal parts are there?
- How many parts are shaded?
- What is the denominator of the fractions? How do you know?
- Why is the denominator of this fraction \qquad ?
- Can you draw a different diagram to show the same fraction?
- If the shape has not been divided equally, can you find a fraction?

Which shapes have $\frac{1}{7}$ shaded?

Stem Sentences:

- The shape is split into \qquad equal parts.
- The denominator is \qquad is $1 / ?$

Key Vocabulary:

denominators unit fractions halves
quarters thirds
fractions whole divide equal parts

Maths - Fractions A

YEAR 3

Small Steps:

1. Understand the denominators of unit fractions.
2. Compare and order unit fractions.
3. Understand the numerators of non-unit fractions.
4. Understand the whole.
5. Compare and order non-unit fractions.
6. Fractions and scales.
7. Fractions on a number line.
8. Count in fractions on a number line.
9. Equivalent fractions on a number line.
10. Equivalent fractions as bar models.

Write < or > to compare the fractions.

Match the fractions to the bar models.

$\frac{1}{2}$

Write $<,>$ or $=$ to compare the fractions.

Key Questions:

- What is the same and what is different about comparing fractions and comparing whole numbers?
- What is the denominator of the fraction? What is the numerator?
- Which is the greater/smaller denominator? Which is the greater/smaller fraction?
- What do you notice about the denominators and the order of the fractions? Why does this happen?
- Is $1 / 4$ greater than $1 / 10$? Can you draw a diagram to show this?

Huan lhas ordered some fractions, but
one of them is in the wrong pllace.

Which fraction is in the wrong pllace?
How da you know?

Stem Sentences:

- The denominator is \qquad because...
- The numerator is \qquad because...
- When the numerators are the same, then the \qquad the denominator, the \qquad the fraction. -

Key
 Vocabulary:

denominators compare order
non-unit fractions unit fractions part-whole equal parts whole diagrams bar models numerators same greater smaller

Write each set of fractions in order, starting with the smallest fraction.

Maths - Fractions A

Small Steps:

1. Understand the denominators of unit fractions.
2. Compare and order unit fractions.
3. Understand the numerators of non-unit fractions.
4. Understand the whole.
5. Compare and order non-unit fractions.
6. Fractions and scales.
7. Fractions on a number line.
8. Count in fractions on a number line.
9. Equivalent fractions on a number line.
10. Equivalent fractions as bar models.

- How many equal parts has the bar model been split into?
- How many equal parts of the bar model are shaded?
- What is the numerator?

What is the denominator?

What fraction of each bar model is shaded?

How do you know?

Key Questions:

- How many equal parts is the whole split into?
- How many equal parts are shaded/circled?
- How do you know what the denominator/numerator is?
- Where can you see the denominator in the diagram? Where can you see the numerator?
- Can you draw a diagram/bar model to represent the fraction?
- What is the difference between a unit fraction and a non-unit fraction?

YEAR 3

Key
 Vocabulary:

numerator unit fractions non-unit fractions quantity number line bar model denominator equal parts whole shaded difference

Stem Sentences:

- There are \qquad equal parts.
- So the denominator is \qquad _.
- __ of the equal parts are shaded.
\qquad .
- So the numerator is
\qquad _.
- The fraction shaded is \qquad

Draw bar models to show each fraction.

Which diagrams show $\frac{3}{5}$?

Amir and Dexter are looking at a bar model.

Amir and Dexter are looking at a bar model.

Maths - Fractions A

YEAR 3

Small Steps:

1. Understand the denominators of unit fractions.
2. Compare and order unit fractions.
3. Understand the numerators of non-unit fractions.
4. Understand the whole.
5. Compare and order non-unit fractions.
6. Fractions and scales.
7. Fractions on a number line.
8. Count in fractions on a number line.
9. Equivalent fractions on a number line.
10. Equivalent fractions as bar models.

Tiny is drawing a bar model.

Complete the sentences for each shape.

The whole is split into \qquad

Complete each fraction so that it is equal to 1 whole.

Key Questions:

- Is the whole split into equal parts?
- How many equal parts has the whole been split into?
- What fraction is shaded?
- How many more parts do you need to shade to make 1 whole?
- What do you notice about the two numerators?
- What do you notice about the numerator and the denominator when the whole is shaded?

Whitney and Eva are looking at this

 bar model.

Dexter is thinking of a fraction.
$\frac{3}{8}$ more than Dexter's fraction is 1 whole.

What fraction is Dexter thinking of? How do you know?

Stem Sentences:

- The whole is split into \qquad equal parts.
- ___ of the parts are shaded.
- I need to shade \qquad more parts to make the whole.
- When the numerator is equal to the denominator, the fraction is equal to \qquad _.

Key Vocabulary:

whole fractions diagrams representations numerator equal to denominator equivalent

Complete the part-whole models

Maths - Fractions A

Small Steps:

1. Understand the denominators of unit fractions.
2. Compare and order unit fractions.
3. Understand the numerators of non-unit fractions.
4. Understand the whole.
5. Compare and order non-unit fractions.
6. Fractions and scales.
7. Fractions on a number line.
8. Count in fractions on a number line.
9. Equivalent fractions on a number line.
10. Equivalent fractions as bar models.

Alex is ordering fractions.
She has spilt ink on her work.

Write greater or less to complete the sentences.

$$
\begin{aligned}
& \frac{1}{4} \text { is } \quad \text { than } \frac{3}{4} \\
& \frac{3}{4} \text { is } \quad \text { than } \frac{1}{4}
\end{aligned}
$$

Write $<,>$ or $=$ to compare the fractions.

Write each set of fractions in order, starting with the smallest.

$$
\frac{2}{7}<\frac{5}{7}<1
$$

What could the missing numerator be?
What could the missing numerator not be?
Explain your answers.

What is the same? What is different?

Stem Sentences:

- When fractions have the same denominator, the
\qquad the numerator, the \qquad the fraction.

Key Questions:

- Are the numerators the same?
- Are the denominators the same?
- If the denominators are the same, how can you compare the fractions?
- Which fraction is greater? How do you know?
- Which fraction is smaller? How do you know?
- What patterns did you spot when you ordered the fractions?

Write < or > to compare the fractions.
Vocabulary:
comparing ordering
unit fractions
non-unit fractions denominator bar model
representations fractions greater numerator smaller
same
patterns

YEAR 3

Key

都 -號| $\frac{3}{10} \bigcirc \frac{7}{10}$ | $\frac{5}{6} \bigcirc \frac{4}{6}$ | $\frac{0}{5} \bigcirc \frac{3}{5}$ |
| :--- | :--- | :--- |
| $\frac{8}{9} \bigcirc \frac{1}{9}$ | $\frac{5}{23} \bigcirc \frac{1}{23}$ | $\frac{5}{7} \bigcirc 1$ |

Maths - Fractions A

YEAR 3

Small Steps:

1. Understand the denominators of unit fractions.
2. Compare and order unit fractions.
3. Understand the numerators of non-unit fractions.
4. Understand the whole.
5. Compare and order non-unit fractions.
6. Fractions and scales.
7. Fractions on a number line.
8. Count in fractions on a number line.
9. Equivalent fractions on a number line.
10. Equivalent fractions as bar models.

What fraction of each shape is shaded?

Whitney is using different metre sticks to mec lengths of lines.

What fraction of a metre is each line?

Key Questions:

- Where does the scale start/end?
- How many equal parts are there? What is the denominator of the fraction?
- How far along the scale is the arrow/water? What is the numerator of the fraction?
- What are you measuring? What unit is it measured in?
- Does the height of the container/scale matter?

Key Vocabulary:

measure scales
numerators
denominators
equal parts
fraction mass
volume
length
quarters
halves
thirds whole metre
litre
kilogram

The weighing scales measure up to 1 kg .
What fraction of a kilogram is shown on each scale?

Stem Sentences:

- The scale has been split into \qquad mark.
- The fraction shown is \qquad -.

Maths - Fractions A

YEAR 3

Small Steps:

1. Understand the denominators of unit fractions.
2. Compare and order unit fractions.
3. Understand the numerators of non-unit fractions.
4. Understand the whole.
5. Compare and order non-unit fractions.
6. Fractions and scales.
7. Fractions on a number line.
8. Count in fractions on a number line.
9. Equivalent fractions on a number line.
10. Equivalent fractions as bar models.

Count forwards to complete the number lines.

How many equal parts are shown on each number line?
Kim has completed the first example.

5 parts
___ parts
__ parts
__ parts

Match the number lines to the number of intervals.

Key Questions:

- What is an interval?
- Are all the intervals equal?
- How do you count the number of intervals?
- Why can you not just count the markers on the number line?
- What is the same and what is different about the number line?
- What fraction of the whole number line is each interval worth?
- When making intervals on a number line, where is a helpful place to start?
- What fraction comes next in the count? How do you know?
- What fraction comes before \qquad ? How do you know?
- What do you notice about the end of each number line?
- What is the denominator going to be? How do you know?
- Which fraction is easiest/hardest to estimate? Why?

Key
 Vocabulary:

fractions number line bar models equal parts intervals label
unit fraction forwards backwards division
numerator
denominator estimate positions right/left halfway

Stem Sentences:

[^0]- The number line has been split into ___ equal parts.
- Each interval is worth $1 /$?
- The number line starts at \qquad and ends at \qquad _.
- This means the number line is counting in \qquad s.
- ___ is greater/less than $1 / 2$ so \qquad will be to the right/left of halfway on the number line.

Maths - Fractions A

YEAR 3

Small Steps:

1. Understand the denominators of unit fractions.
2. Compare and order unit fractions.
3. Understand the numerators of non-unit fractions.
4. Understand the whole.
5. Compare and order non-unit fractions.
6. Fractions and scales.
7. Fractions on a number line.
8. Count in fractions on a number line.
9. Equivalent fractions on a number line.
10. Equivalent fractions as bar models.

The number lines show that $\frac{1}{2}$ and $\frac{2}{4}$ are equivalent fractions.

Use these number lines to find a pair of equivalent fractions.

Draw number lines to complete the equivalent fractions.

Key Questions:

- What other word does "equivalent" remind you of?
- What are equivalent fractions?
- What are the start and end numbers of each number line?
- Which fractions are in line with ___?
\qquad
- How do you know \qquad is equivalent to \qquad ?
- When drawing number lines/bar models to show equivalent fractions, why is it important that your number lines are equal in length?
- What do you notice about the numerators and denominators of the fraction that are equivalent to $1 / 2$, $1 / 3$, and $1 / 4$?
- What does each whole bar model show?
- How many equal parts has the bar model been split into? What fraction does this show?
- How can splitting each part of the bar model into the same number of smaller parts help you to find equivalent fractions?

Stem Sentences:

- The number lines start at \qquad and end at \qquad -.
- I know \qquad is equivalent to \qquad because...
- The bar model is split into \qquad equal parts.
- The bar model shows \qquad
\qquad

Key
 Vocabulary:

equivalent fractions comparing multiple number lines equal in value numerator
denominator start/end points bar model
divided
amount

Maths - Mass and Capacity

Small Steps:

1. Use scales.
2. Measure mass in grams.
3. Measure mass in kilograms and grams.
4. Equivalent masses (kilograms and grams).
5. Compare mass.
6. Add and subtract mass.
7. Measure capacity and volume in millilitres.
8. Measure capacity and volume in litres and millimetres.
9. Equivalent capacities and volumes (litres and millimetres).
10. Compare capacity and volume.
11. Add and subtract capacity and volume.

Key Questions:

What is the value at the start of the number line? What is the value at the end of the number line?

- How many equal parts is the number line split into?
- What is the value of each interval on the number line?
- What is the value of each part if 100 is divided into
\qquad equal parts.
- What is the same/different about these two number lines?
- What does this mark on the number line represent? How do you know?

YEAR 3

Key

Vocabulary:
grams kilograms mass capacity scales
measurements dividing hundred equal parts number lines intervals multiples

Stem Sentences:

- If 100 is shared into \qquad equal parts, then each part is worth \qquad -
- The number line is counting up in \qquad s.
- When counting up in \qquad s , the \qquad interval is \qquad -

Maths - Mass and Capacity

Small Steps:

1. Use scales.
2. Measure mass in grams.
3. Measure mass in kilograms and grams.
4. Equivalent masses (kilograms and grams).
5. Compare mass.
6. Add and subtract mass.
7. Measure capacity and volume in millilitres.
8. Measure capacity and volume in litres and millimetres.
9. Equivalent capacities and volumes (litres and millimetres).
10. Compare capacity and volume.
11. Add and subtract capacity and volume.

What is the mass of each object?

Draw arrows on the scales to show the mass of each box of flour.

Complete the sentence for each arrow.

Arrow
What fraction of a kilogram is each arrow pointing to?
What mass is each arrow pointing to?
Give your answers in kilograms and grams.

Key Questions:

- What does mass mean?
- What units do you use to measure mass?
- What is the start/end value on the scale?
- How many equal intervals are there on the scale?
- How do you know what the missing numbers are?
- If the measurement is halfway between two marks, how can you work out what it is?
- What are kilograms and grams? What is the same and what is different about them?
- How many grams are there in 1 kg ?
- How many grams is half/quarter of a kilogram?
- If a mass is between two whole kilograms, how can you work out the exact mass?

Stem Sentences:

- The start of the scale is \qquad grams.
- The end of the scale is \qquad grams.
- There are \qquad intervals.
- The scale is counting up in \qquad s.
- The mass of the \qquad is is kg an \qquad kg.
- The mass is between
\qquad -g.
- Each interval is worth \qquad g. 9
- The mass is \qquad kg and
\square
- The arrow on the scale is pointing to \qquad kg and \qquad g.
\qquad

YEAR 3

Key

Vocabulary:

mass

grams
thousands scales
number lines
intervals
start/end point units
measure equal
halfway
kilograms
fractions
equivalent divided same/different half quarter g.

Maths - Mass and Capacity

Small Steps:

1. Use scales.
2. Measure mass in grams.
3. Measure mass in kilograms and grams.
4. Equivalent masses (kilograms and grams).
5. Compare mass.
6. Add and subtract mass.
7. Measure capacity and volume in millilitres.
8. Measure capacity and volume in litres and millimetres.
9. Equivalent capacities and volumes (litres and millimetres).
10. Compare capacity and volume.
11. Add and subtract capacity and volume.

Sort the pictures into the table.

Whose answer do you think is the best?

[^1]
Key Questions:

- How many grams are there in a kilogram?
- How many grams are there in half a kilogram?
- How many grams are there in one quarter of a kilogram?
- If a kilogram is split into \qquad equal parts, how many grams is each part worth?
- What is \qquad equivalent to?
- How many more grams are needed to make 1 kg ?

Work out the mass of each box.

Stem Sentences:

- ___ g is equivalent to ___ kg
- $\quad \ldots \quad \mathrm{g}+\ldots=1,000 \mathrm{~g}=1 \mathrm{~kg}$.
- I need \qquad more grams to make a kilogram.
- This mass is/is not equivalent to 1 kilogram because....

YEAR 3

Key

measure grams kilograms scales units
thousand mass
addition subtraction amount fractions half quarter equal parts worth equivalent more

Maths - Mass and Capacity

Small Steps:

1. Use scales.
2. Measure mass in grams.
3. Measure mass in kilograms and grams.
4. Equivalent masses (kilograms and grams).
5. Compare mass
6. Add and subtract mass.
7. Measure capacity and volume in millilitres.
8. Measure capacity and volume in litres and millimetres
9. Equivalent capacities and volumes (litres and millimetres).
10. Compare capacity and volume.
11. Add and subtract capacity and volume.

Complete the sentences:

\qquad bananas have the same mass as \qquad apples.
1 banana has the same mass as ___ apples.
The mass of 1 banana is ___ than the mass of 1 apple.

Rosie puts different amounts of flour onto the scales.
For each scale, say what will happen and why.

Write < , > or = to compare the masses.
500 g 500 kg 1 kg and 300 g

Key Questions:

- Which object is heavier/lighter? How do you know?
- Which is heavier: 1 kg or 100 g ?
- Which is heavier: 1 kg and 100 g or 1 kg and 400 g ?
- Which is heavier: 500 g or 3 kg and 100 g ?
- Which is heavier 600 g or $1 / 2 \mathrm{~kg}$?
- If you know the total mass of two identical items, how can you work out the mass of one of them?
- If 2 \qquad have the same mass as 3 \qquad which object is heavier?

Stem Sentences:
-
kg is heavier/lighter than \qquad kg, so \qquad kg and \qquad g is is heavier/lighter than kg and \qquad -g.

- The number of kilograms is the same so I need to compare the \qquad .
compare masses
grams
kilograms heavier
lighter
scales
units
measure hundred
fractions
half
same
equal
total
identical

Maths - Mass and Capacity

Small Steps:

1. Use scales.
2. Measure mass in grams.
3. Measure mass in kilograms and grams.
4. Equivalent masses (kilograms and grams).
5. Compare mass.
6. Add and subtract mass.
7. Measure capacity and volume in millilitres.
8. Measure capacity and volume in litres and millimetres.
9. Equivalent capacities and volumes (litres and millimetres).
10. Compare capacity and volume.
11. Add and subtract capacity and volume.

Complete the bar models.

3 kg and 100 g
1 kg and 450 g

Key Questions:

- How can you add using kilograms and grams?
- Which part did you work with first? Why?
- What method could you use to add \qquad to \qquad
- What method could you use to subtract ___ from
\qquad ?
- How can you show this question using a bar model?
- What objects can you use to help complete this calculation?
- Do you need to add or subtract to answer this question?

What is the total mass of the two presents?

Stem Sentences:

- The total of \qquad g / kg is \qquad g / kg.
- The difference between \qquad g / kg and \qquad $/ \mathrm{kg}$ is \qquad
- ____kg add/subtract \qquad kg is equal to \qquad kg.
- ___g add/subtract \qquad g is equal to \qquad
- The total/different is \qquad kg \qquad _g.

Maths - Mass and Capacity

Small Steps:

1. Use scales.
2. Measure mass in grams.
3. Measure mass in kilograms and grams.
4. Equivalent masses (kilograms and grams).
5. Compare mass.
6. Add and subtract mass.
7. Measure capacity and volume in millilitres.
8. Measure capacity and volume in litres and millimetres.
9. Equivalent capacities and volumes (litres and millimetres).
10. Compare capacity and volume.
11. Add and subtract capacity and volume.

Label the divisions on the scales of the jugs.
Complete the sentences to help.

The difference between the start and end values on the scale is \qquad
There are
\qquad equal intervals.
\qquad
\qquad $=$

What is the volume of water in each jug?

Key Questions:

- What is the difference between capacity and volume?
- What is the capacity of the container? How do you know?
- What is the difference between the start and end values on the scale?
- How many equal intervals are there?
- What is each interval worth?
- How can you work out halfway between two marks?
- What unit is the volume/capacity measured in?
- How many millilitres are there in 1 litre?
- How many intervals are there between two marks on a scale?

Stem Sentences:

- The scale has been split into \qquad equal parts, so each mark represents \qquad ml.
\qquad mark, so the volume of
- The water is full to the water is \qquad ml .
- The arrow on the scale is pointing to \qquad l and

Half of the water from bucket A is poured into bucket B.
Shade bucket B to show where the water will reach.

- The volume is between \qquad l and \qquad I.
- There are \qquad intervals.
- Each interval is worth \qquad
- The volume is \qquad 1 and \qquad ml.

YEAR 3

Key

Vocabulary:

capacity volume liquid amount hold millilitres measure greater estimating difference start/end values scale equal intervals worth halfway unit litres thousand

Maths - Mass and Capacity

Small Steps:

1. Use scales.
2. Measure mass in grams.
3. Measure mass in kilograms and grams.
4. Equivalent masses (kilograms and grams).
5. Compare mass.
6. Add and subtract mass.
7. Measure capacity and volume in millilitres.
8. Measure capacity and volume in litres and millimetres.
9. Equivalent capacities and volumes (litres and millimetres).
10. Compare capacity and volume.
11. Add and subtract capacity and volume.

What is the same and what is different about these jugs?

What is the volume of liquid in each jug?

Give your answers in millilitres

Shade the jugs to show where the water will reach

500 ml

700 ml

150 ml

Key Questions:

- How many 100 ml containers full of water fill a 1 litre container?
- How many millilitres are equivalent to 1 litre?
- How many equal parts are there?
- What is each interval worth?
- Do you always need to count up the scale to find out how much there is?
- How can you use number bonds to 100 to help?

Complete the number sentences.

($30 \mathrm{ml}+70 \mathrm{ml}=$ \qquad ml
$300 \mathrm{ml}+700 \mathrm{ml}=$ \qquad ml

- $45 \mathrm{ml}+55 \mathrm{ml}=$ \qquad ml
- $450 \mathrm{ml}+550 \mathrm{ml}=$ \qquad ml
($100 \mathrm{ml}-38 \mathrm{ml}=$ \qquad ml
($1,000 \mathrm{ml}-380 \mathrm{ml}=$ \qquad ml $\rightarrow 21 \mathrm{ml}+\ldots \mathrm{ml}=100 \mathrm{ml}>210 \mathrm{ml}+\ldots \ldots \mathrm{ml}=1,000 \mathrm{ml}$ $>\ldots \ldots \mathrm{ml}+340 \mathrm{ml}=1,000 \mathrm{ml}>\ldots \mathrm{ml}+340 \mathrm{ml}=1$ litre

Stem Sentences:

- There are \qquad ml in 1 litre. $=1,000 \mathrm{ml}=1$ litre.
- _ml ml
\qquad more millilitres to make 1 litre.
- The capacity/volume is/is not equivalent to 1 litre because...

YEAR 3

Key

Maths - Mass and Capacity

Small Steps:

1. Use scales.
2. Measure mass in grams.
3. Measure mass in kilograms and grams.
4. Equivalent masses (kilograms and grams).
5. Compare mass.
6. Add and subtract mass.
7. Measure capacity and volume in millilitres.
8. Measure capacity and volume in litres and millimetres.
9. Equivalent capacities and volumes (litres and millimetres).
10. Compare capacity and volume.
11. Add and subtract capacity and volume.

Each container has the same capacity

Put the containers in order of the volume of liquid they contain. Start with the container with the greatest volume.

Is the statement true or false?

Key Questions:

- What is the difference between capacity and volume?
- Which container do you think has the greater capacity? Why?
- Which container do you think has the greater volume of liquid in? why?
- How can you work out the actual capacity of each container?
- What is each interval worth?
- How can you workout halfway between two marks?
- What unit is the volume/capacity measured in?
- How many millilitres are the in \qquad litres?

Write $<,>$ or $=$ to compare the capacities.

YEAR 3

Key

Vocabulary:

litres
millilitres
compare
capacity
Volume
estimation greater full nearly full half full nearly empty greater than less than symbols measured difference interval worth halfway
unit

Stem Sentences:

- The capacity of the first container is \qquad than the capacity of the second container because...
- The volume of liquid in the first container is \qquad than the volume in the second container because
- There are ____millilitres in litre.
\qquad

Maths - Mass and Capacity

Small Steps:

1. Use scales.
2. Measure mass in grams.
3. Measure mass in kilograms and grams.
4. Equivalent masses (kilograms and grams).
5. Compare mass.
6. Add and subtract mass.
7. Measure capacity and volume in millilitres.
8. Measure capacity and volume in litres and millimetres.
9. Equivalent capacities and volumes (litres and millimetres).
10. Compare capacity and volume.
11. Add and subtract capacity and volume.

Whitney has some jugs of water.

She pours all the water from jug A into jug B. How much water is now in jug B?

Alex has this orange juice in a jug. She drinks 300 ml .
How much orange juice is left in the jug?

Amir uses part-whole models to add 31500 ml and 21400 ml .

> 3 litres +2 litres $=5$ litres $500 \mathrm{ml}+400 \mathrm{ml}=900 \mathrm{ml}$ So the total is 5 litres 900 ml .

Use Amir's method to work out the totals.

Key Questions:

- What units are being used? Can you add/subtract them?
- How many litres are there altogether? How many millilitres are there?
- What volume do you need to add to reach 1 litre? How much more liquid is still left to add?
- How could you work out the difference?
- In what order are you going to do the calculations?
- Do you have to do them in a certain order or is there a more efficient method?

Work out the subtractions.

$101195 \mathrm{ml}-8 \mathrm{ml}$
$10 \mid 195 \mathrm{ml}-3$ |
$31400 \mathrm{ml}-400 \mathrm{ml}$

YEAR 3

Vocabulary:

adding
subtracting capacity volume units
litres
millilitres
part-whole model
thousand
equivalent whole altogether more
difference order calculations method equal total

Stem Sentences:

- ___lit litres add/subtract \qquad litres is equal to \qquad litres.
- ___ml add/subtract \qquad ml is equal to \qquad ml .
- So the total/difference is \qquad I ml.

Maths - Length and Perimeter

Small Steps:

1. Measure in metres and centimetres.
2. Measure in millimetres.
3. Measure in centimetres and millimetres.
4. Metres, centimetres and millimetres.
5. Equivalent lengths (metres and centimetres).
6. Equivalent lengths (centimetres and millimetres)
7. Compare lengths.
8. Add lengths.
9. Subtract lengths.
10. What is perimeter?
11. Measure perimeter.
12. Calculate perimeter

Mo and Annie use metre sticks to measure their height. How tall are they?

What is the length of the line?

What is the length of the lollipop?

Tiny is measuring the table top.

Key Questions:

- Where should you start measuring from on your ruler?
- What is the length of \qquad in centimetres?
- What is the length of \qquad in metres?
- What is the length of \qquad in metres and centimetres?
- Would you measure the length of the classroom in centimetres or metres? Why?
- What equipment would you use to measure the length of \qquad ?

Use a ruler to measure the lines.
A \qquad

Stem Sentences:

- The \qquad is \qquad cm long.

[^2]Explain your answer

- The \qquad is \qquad m long
- The \qquad
\qquad m and \qquad cm long.

YEAR 3

Key
 Vocabulary:

metres centimetres
length ruler unit
measurement heights m
cm
tape measure metre stick trundle wheel

Maths - Length and Perimeter

Small Steps:

1. Measure in metres and centimetres.
2. Measure in millimetres.
3. Measure in centimetres and millimetres.
4. Metres, centimetres and millimetres.
5. Equivalent lengths (metres and centimetres).
6. Equivalent lengths (centimetres and millimetres).
7. Compare lengths.
8. Add lengths.
9. Subtract lengths.
10. What is perimeter?
11. Measure perimeter.
12. Calculate perimeter

Whitney measures her rubber in millimetres. \qquad
My rubber is less than 60 mm . Its length is in the 5 times. lts add up to 9

[^3]What are the lengths of the lines in millimetres?

What lengths are the arrows pointing to?

What are the lengths of the lines in millimetres?

Talk about it with a partner.

Is the statement true or false?

```
A length measured in millimetres
```

A length measured in millimetres
is always shorter than a length
is always shorter than a length
measured in centimetres.
measured in centimetres.
moys shorter than a length

```
            moys shorter than a length
```


Key Questions:

- Why is it important to start measuring from zero on your ruler?
- How many intervals are there between 0 and 1 cm ?
- So how many millimetres are there in 1 cm ?
- Where is the 5 mm mark on your ruler?
- What is the same and what is different about measuring a length in centimetres and measuring a length in millimetres?
- What is the length of ___ in millimetres?
- Would you measure the height of the door in millimetres?

Measure these lines to the nearest millimetre.

Key
 Vocabulary:

millimetres unit
measurement smaller lengths measure centimetres ruler mm
.

Stem Sentences:

- The \qquad is ___mm long
- 1 mm is \qquad than 1 cm .
- 1 mm is \qquad than 1 m .

YEAR 3

Maths - Length and Perimeter

Small Steps:

1. Measure in metres and centimetres.
2. Measure in millimetres.
3. Measure in centimetres and millimetres.
4. Metres, centimetres and millimetres.
5. Equivalent lengths (metres and centimetres).
6. Equivalent lengths (centimetres and millimetres).
7. Compare lengths.
8. Add lengths.
9. Subtract lengths.
10. What is perimeter?
11. Measure perimeter.
12. Calculate perimeter

Tiny measures the sweet.

Do you agree with Tiny?
Explain your answer.

What is the length of each object in centimetres and millimetres?

Dexter, Alex and Tommy are comparing the lengths of their pencils.

What could be the length of Tommy's pencil?
Compare answers with a partner

Key Questions:

- Which is greater in length, 1 mm or 1 cm ?
- What are the main things to remember in order to measure accurately using a ruler?
- Is the \qquad an exact number of centimetres long?
- How many millimetres past the last centimetre interval does the \qquad reach?
- How do you write a length that is not an exact number of centimetres?
- How does the 5 mm interval help you to measure the length?

Measure the lines.
Give your answers in centimetres and millimetres.

Key
 Vocabulary:

measure centimetres millimetres ruler forwards backwards accurate lengths greater mm cm interval

YEAR 3

 orwards
Stem Sentences:

$\mathrm{mm}=$ \qquad cm and \qquad mm

- The \qquad is \qquad cm and \qquad mm long.

Maths - Length and Perimeter

Small Steps:

1. Measure in metres and centimetres.
2. Measure in millimetres.
3. Measure in centimetres and millimetres.
4. Metres, centimetres and millimetres.
5. Equivalent lengths (metres and centimetres)
6. Equivalent lengths (centimetres and millimetres).
7. Compare lengths.
8. Add lengths.
9. Subtract lengths.
10. What is perimeter?
11. Measure perimeter.
12. Calculate perimeter

Which unit would you use to measure each item?
Sort the items into the table.

Write the lengths in order.
Start with the shortest length.

Key Questions:

- How many millimetres are there in a centimetre?
- How many centimetres are there in a metre?
- Which is longer, 1 m or 1 cm ?
- Which is shorter, 1 cm or 1 mm ?
- Which is longer, 3 m or 60 cm ?
- Which is shorter 4 cm or 20 mm ?
- What unit would you use to measure the length of
\qquad

Use the digit cards to complete the statement.

Find all the possible answers.

Stem Sentences:

- ___ m is shorter/longer than \qquad cm.
- ___mm is shorter/longer than \qquad cm.
- There are \qquad mm in 1 cm .
- There are \qquad cm in 1 m .

Key
 Vocabulary:

compare units
measurement
metres
measure
longer
distance
centimetres millimetres
equipment length comparisons m cm
mm
longer shorter

Is the statement always true, sometimes true or never true?
A length measured in metres will be longer than a length measured in centimetres.

Explain your answer.

Write $<,>$ or $=$ to compare the lengths.

Maths - Length and Perimeter

Small Steps:

1. Measure in metres and centimetres.
2. Measure in millimetres.
3. Measure in centimetres and millimetres.
4. Metres, centimetres and millimetres.
5. Equivalent lengths (metres and centimetres).
6. Equivalent lengths (centimetres and millimetres).
7. Compare lengths.
8. Add lengths.
9. Subtract lengths.
10. What is perimeter?
11. Measure perimeter.
12. Calculate perimeter

Use the bar models to complete the sentences.

1 m	1 m	1 m	1 m
100 cm			

Key Questions:

- How many centimetres are there in $1 \mathrm{~m} / 1 \mathrm{~cm}$?
- How can you work out how many centimetres/millimetres there are in $6 \mathrm{~m} / 4 \mathrm{~cm}$?
- What is \qquad centimetres in metres?
- How many centimetres/millimetres are there in \qquad m / cm and \qquad $\mathrm{cm} / \mathrm{mm}$?
- How can you partition $430 \mathrm{~cm} / 47 \mathrm{~mm}$ to help you to write the measurement in metres and centimetres/centimetres and millimetres?
- How many centimetres/millimetres are there in $1 / 2 \mathrm{~m} / 1 / 2 \mathrm{~cm}$?
- So how many centimetres are there in $41 / 2$ metres?
- How do you know \qquad mm and \qquad cm are equivalent?

Stem Sentences:

- There are \qquad cm in 1 m
- $1 \mathrm{~m}=100 \mathrm{~cm}$, so \qquad $\mathrm{m}=$ \qquad cm .
- I can partition ___ cm into ___cm and \qquad cm.
- There are 100 cm in 1 m , so \qquad $\mathrm{cm}=$ \qquad m and \qquad cm.
- $1 / 2 \mathrm{~m}=$ \qquad cm.
- $1 \mathrm{~cm}=10 \mathrm{~mm}$, so \qquad $\mathrm{mm}=$ \qquad cm
- $1 \mathrm{~cm}=10 \mathrm{~mm}$, so \qquad $\mathrm{cm}=$ \qquad mm
\qquad $\mathrm{mm}=$ \qquad mm + \qquad $\mathrm{mm}=$ \qquad cm and \qquad mm
-

 cm and \qquad $\mathrm{mm}=$ \qquad $\mathrm{mm}+$ \qquad $\mathrm{mm}=$ \qquad mm
number line common fractions multiplying dividing

Key Vocabulary:

 metres m equivalent cm convert multiples hundreds partition measurement centimetres lengths part-whole model bar model
YEAR 3

Which measurement is the odd one out?

Explain your choice.

Complete the bar models.

Maths - Length and Perimeter

YEAR 3

Small Steps:

1. Measure in metres and centimetres.
2. Measure in millimetres.
3. Measure in centimetres and millimetres.
4. Metres, centimetres and millimetres.
5. Equivalent lengths (metres and centimetres).
6. Equivalent lengths (centimetres and millimetres).
7. Compare lengths.
8. Add lengths.
9. Subtract lengths.
10. What is perimeter?
11. Measure perimeter.
12. Calculate perimeter

Write $<,>$ or $=$ to compare the lengths.

- Jack is comparing 34 mm and 3 cm 6 mm .

Complete the sentences.
> $3 \mathrm{~cm} 6 \mathrm{~mm}=\ldots \mathrm{mm}$

- 34 mm is \qquad than \qquad
Is there another way to compare the measurements?
- Amir and Dora measure their heights.
- Amir's height is 127 cm .
- Dora's height is 1 m and 30 cm .

Write taller or shorter to complete the sentences.

- Amir is \qquad than Dora.
- Dora is \qquad than Amir.

Brett has put some lengths in order from shortest to longest.

74 cm 7 mm

\square

Fill in the missing measurement.
Find three possible answers.

Key Questions:

- How can you compare lengths given in different units?
- Why does finding equivalent lengths with the same unit make it easier to compare lengths?
- Does it matter which unit of measurement you use to compare?
- Is the unit of measurement or the size of the number more important?
- How many $\mathrm{mm} / \mathrm{cm}$ are there $\mathrm{in} \mathrm{cm} / \mathrm{mm}$?

Write the lengths in order.

Start with the shortest length.

2 m
1 m 75 cm
170 cm

Stem Sentences:

- \qquad m \qquad cm is equal to \qquad cm.
\qquad cm is \qquad than \qquad cm, so the greater length i \qquad cm.
\qquad cm is mm is \qquad than \qquad _mm, so the greater length is \qquad mm .

Maths - Length and Perimeter

Small Steps:

1. Measure in metres and centimetres.
2. Measure in millimetres.
3. Measure in centimetres and millimetres.
4. Metres, centimetres and millimetres.
5. Equivalent lengths (metres and centimetres).
6. Equivalent lengths (centimetres and millimetres).
7. Compare lengths.
8. Add lengths.
9. Subtract lengths.
10. What is perimeter?
11. Measure perimeter.
12. Calculate perimeter.

Sam, Ron and Esther take part in a standing jump competition. Complete the table to show their total jump distances.

Child	Jump 1	Jump 2	Jump 3	Total
Sam	90 cm	65 cm	1 m 10 cm	
Ron	85 cm	85 cm	80 cm	
Esther	75 cm	1 m	1 m 25 cm	

What is the difference in length between the bottle of water and the can of fizzy drink?
Write your answer in centimetres.

[^4]Dora builds this tower out of boxes.

- How tall is Dora's tower?

Dora puts a third box on the tower. The box is 30 cm tall.

How tall is Dora's tower now?
Can you write your answer another way?

Complete the bar models.

Key Questions:

- How many centimetres are there in 1 m ?
- How many centimetres are there in \qquad m and
\qquad cm ?
- How many millimetres are there in 1 cm ?
- Why is it important the lengths have the same unit of measurement before adding/subtracting them?
- Which unit of measurement will you use to find equivalent lengths before adding/subtracting them? Why?
- How did you find the total length?
- Does it matter in which order you add the lengths?
- What is the difference in length between the two objects?
- How can you check that you have the correct answer?

Stem Sentences:

- ___ $\mathrm{cm}+\ldots \quad \mathrm{mm}=$ \qquad $\mathrm{cm}+$ \qquad $\mathrm{cm}=$ $=$ \qquad cm. mm
- ___m \qquad $\mathrm{cm}=$ \qquad of m rement \qquad because...
- I am going to convert all of the units of measurement to
\qquad $\mathrm{mm} / \mathrm{cm}=1 \mathrm{~cm} / 1 \mathrm{~m}$
- \qquad cm \qquad mm = \qquad mm - \qquad $\mathrm{mm}=$ \qquad mm m- \qquad $\mathrm{cm}=$ \qquad cm - \qquad $\mathrm{cm}=$ \qquad cm.

Key
 Vocabulary:

add/adding lengths
measured
measurement units equivalent strategies exchanges subtracting whole number conversions reduction difference

Maths - Length and Perimeter

Small Steps:

1. Measure in metres and centimetres.
2. Measure in millimetres.
3. Measure in centimetres and millimetres.
4. Metres, centimetres and millimetres.
5. Equivalent lengths (metres and centimetres).

Key Questions:

- What does perimeter mean?
- When might someone need to find the perimeter in real life?
- Why are you unable to find the perimeter of this shape?
- How would you use your finger to trace the perimeter of this piece of paper?
- Which of the shapes has the greater perimeter?
- How do you know?
- How does the squared grid help you to find the perimeter?
- What equipment is useful for measuring the perimeter of a shape?
- Does start in different places when measuring the perimeter give you a different answer?
- Do you need to measure all sides? How do you know?
- Which method do you prefer, to find the perimeter of a square?
- Can you find the perimeter of a shape with a curved edge? How?
- Are any of the sides equal?

Key
 Vocabulary:

perimeter distance
open/closed counting edges
miscount
measure
sides
centimetres
properties calculate

- How can you work out the perimeter of the shape?
- What other method could you use to measure before you can find the perimeter?
- How can you work out the lengths of the sides that are not labelled?
- How many sides do you need to measure before you can find the perimeter?
- Do the lengths need to haver the same unit of measurement? How do you find equivalent lengths?
\qquad cm.
- The perimeter of shape is ...
- This shape does/does not have a perimeter because....
- I can find the perimeter of this shape by...
cm + \qquad cm + \qquad cm
\qquad —.
- The missing side length is \qquad cm because...

[^0]: What is the same about their number lines? What is different?

[^1]: Explain why.

[^2]: Do you agree with Tiny?

[^3]: Work out the length of Whitney's rubber

[^4]: Who jumped the greatest total distance?

