Maths - Place Value

Small Steps:

1. Roman numerals to 1,000.
2. Numbers to 10,000 .
3. Numbers to 100,000 .
4. Numbers to $1,000,000$.
5. Read and write numbers to 1,000,000.
6. Powers of 10.
7. $10 / 100 / 1,000 / 10,000 /$ 100,000 more or less.
8. Partition numbers to 1,000,000.
9. Number line to 1,000,000.
10. Compare and order numbers to 100,000.
11. Compare and order numbers to 1,000,000.
12. Round to the nearest 10,100 or 1,000 .
13. Round within 100,000 .
14. Round within 1,000,000.

Key Questions:

- What patterns can you see in the Roman number system?
- What rules do we use when converting numbers to Roman Numerals?
- What letters are used in the Roman number system? What does each letter represent?
- How do you know what order to write the letters when using Roman Numerals?
- What is the same and what is different about representing the number "five hundred and three" in the Roman number system and in our number system?

Here is a date written in Roman numerals.

XXI / IX / MMXV

What day of the month is shown?
What month is shown?
What year is shown?

YEAR 5

Key

Vocabulary:
Roman numerals
hundred thousand D
M
similarities
differences
Roman number system
zero
placeholders
years date patterns rules
converting letters represent order same different greater than less than

Stem Sentences:

- The letter \qquad represent the number \qquad
- I know \qquad is greater than \qquad because...

Maths - Place Value

YEAR 5

Key Questions:

- What is the value of each digit in the number?
- How can you represent the number in a different way?
- Which digit or digits would change in value if you added a 10/100/1000 counter?
- How do you write the number in words?

Match the representations to the numbers.

Stem Sentences:

- The value of the \qquad in \qquad is \qquad ____. column is the \qquad column.
- The column before/after the \qquad 1
- 10 \qquad can be exchanged for 1 \qquad
- \qquad can be exchanged for \qquad .

Maths - Place Value

Key Questions:

- Counting in 1,000 's, what would you say after "nine thousand"?
- Counting in 10,000's, what would you say after "sixty thousand"?
- How can you represent the number 65,000 using a number line?
- What is the value of each digit in the number?
- If 10,000 is the whole, what could the parts be?

Stem Sentences:

- The value of the \qquad in \qquad is
- The column before/after the ___column is the \qquad

What number is shown on the place value chart?

Complete the grid to show the number in different ways.

Small Steps:

1. Roman numerals to 1,000.
2. Numbers to 10,000 .
3. Numbers to 100,000 .
4. Numbers to $1,000,000$.
5. Read and write numbers to 1,000,000.
6. Powers of 10.
7. $10 / 100 / 1,000 / 10,000 /$ 100,000 more or less.
8. Partition numbers to 1,000,000.
9. Number line to 1,000,000.
10. Compare and order numbers to 100,000.
11. Compare and order numbers to 1,000,000.
12. Round to the nearest 10,100 or 1,000 .
13. Round within 100,000 .
14. Round within 1,000,000.

YEAR 5

Key
Vocabulary:
hundred thousand
ten-thousands column
place value multiples number line value estimate position counting before after represent whole parts column.

Maths - Place Value

Small Steps:

1. Roman numerals to 1,000.
2. Numbers to 10,000 .
3. Numbers to 100,000 .
4. Numbers to $1,000,000$.
5. Read and write numbers to 1,000,000.
6. Powers of 10 .
7. $10 / 100 / 1,000 / 10,000 /$ 100,000 more or less.
8. Partition numbers to 1,000,000.
9. Number line to 1,000,000.
10. Compare and order numbers to 100,000.
11. Compare and order numbers to $1,000,000$.
12. Round to the nearest 10,100 or 1,000 .
13. Round within 100,000 .
14. Round within 1,000,000.

What number is shown in each place value chart?
Give your answers in numerals.

What is the value of the 4 in each number?

Key Questions:

- Where do the commas go when writing one million in numerals?
- How does a place value chart help you to represent large numbers?
- What is the value of each digit in this number?
- Are 6-digit numbers always greater in value than 5-digit numbers?
- When do you use placeholders in numbers?
- If one million is the whole, what could the parts be?
- When a number is written with commas, what do the numbers before/after each comma represent?
- How can this number be represented using a part-whole model? What parts would it be sensible to use?
- How do you write " $1,000,000$ " in words?
- When do you use the word "and" when reading or writing a number?

Stem Sentences:

YEAR 5

Key

 Vocabulary:million pattern thousands
place value

ones

tens
hundreds
thousands
ten thousands
hundred thousands
partitioning
numerals
commas
value
digit
6-digit
greater
5-digit
placeholders
whole
parts

- The value of the \qquad in \qquad is
\qquad column is the \qquad column.
- The number beforelafter the commas is ___. This part of the number is said/written as \qquad _.
- The whole of the number is said/written as \qquad .

Maths - Place Value

Small Steps:

1. Roman numerals to 1,000.
2. Numbers to 10,000 .
3. Numbers to 100,000 .
4. Numbers to $1,000,000$.
5. Read and write numbers to $1,000,000$.
6. Powers of 10.
7. $10 / 100 / 1,000 / 10,000 /$ 100,000 more or less.
8. Partition numbers to 1,000,000.
9. Number line to 1,000,000.
10. Compare and order numbers to 100,000 .
11. Compare and order numbers to $1,000,000$.
12. Round to the nearest 10,100 or 1,000 .
13. Round within 100,000 .
14. Round within 1,000,000.

100,000	200,000	300,000	400,000	500,000	600,000	700,000	800,000	900,000
10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000
1,000	2,000	3,000	4,000	5,000	6,000	7,000	8,000	9,000
100	200	300	400	500	600	700	800	900
10	20	30	40	50	60	70	80	90
1	2	3	4	5	6	7	8	9

20,417 is shown in the place value chart.

What is 100 more than 20,417 ?
What is 10 less than 20,417 ?
What is 1,000 less than 20,417 ?

Key Questions:

- How can you tell is a number is a power of 10 ?
- Is this number a multiple of a power of 10 ? How can you tell?
- If you move a digit one place to the left in a place value chart, how many times greater is the value of the digit?
- If you move a digit two places to the left in a place value chart, how many times greater is the value of the digit?
- What patterns can you see in the Gattegno chart?
- How can you use a place value chart to find 10/100/1,000 more or less than a given number?
- How can you use a Gattegno chart to find 10/100/1000 more/less than a given number?
- How many digits of the number will change if you add 10/100/1000 to the given number?
- What is the same and what is different about the patterns of the numbers vertically and horizontally in a Gattegno chart?

Stem Sentences:

\qquad hundreds in 1,000 and \qquad thousands in \qquad -
There are __hundreds in 1,000 and
This means there are_in_ in
\qquad
\qquad -
\qquad is \qquad the size of
\qquad is \qquad
\square
\qquad more/less than \qquad
\qquad

YEAR 5

Key Vocabulary:

columns adjacent tens
hundreds thousand multiples
place value chart
Gattegno chart multiply
multiplication
power of 10 left/right
greater more/less patterns the size of forwards backwards sequences rule values between crossing same/different vertically/horizontally

Maths - Place Value

Small Steps:

1. Roman numerals to 1,000.
2. Numbers to 10,000 .
3. Numbers to 100,000 .
4. Numbers to $1,000,000$.
5. Read and write numbers to $1,000,000$.
6. Powers of 10.
7. $10 / 100 / 1,000 / 10,000 /$ 100,000 more or less.
8. Partition numbers to 1,000,000.
9. Number line to 1,000,000.
10. Compare and order numbers to 100,000 .
11. Compare and order numbers to 1,000,000.
12. Round to the nearest 10,100 or 1,000 .
13. Round within 100,000 .
14. Round within

1,000,000.

Partition the numbers into thousands, hundreds, tens and ones.

- $6,789=$ \qquad ${ }^{+}+$ \qquad $+$ $-+$ \qquad
- $4,813=$ \qquad $+$ $+\ldots+$ $+$

Complete the number sentences.
\qquad $=20,000+7,000+800+40+3$

- $560,830=$ \qquad $+60,000+$ \qquad $+30$

Complete the part-whole models for 85,700

Label the start and end points on the number line.

Key Questions:

- What number is being represented?
- How can place value cards be sued to help partition a number?
- If you have 10 hundreds/thousands/tens-thousands, what can these be exchanged for?
- How does knowing that $9+5=14$ help you to work out 9 tens +5 tens? What about 9 thousands +5 thousands?
- How else can you say/write "14 tens" or "14 thousands"?
- What are the values at the start and the end of the number line?
- How many large intervals are there in the whole number line? What is each large interval worth?
- How many small intervals are there between each of the large intervals on the number line? What is each small interval worth?
- What is the midpoint between \qquad and \qquad ?

Stem Sentences:

- The value of the first digit is \qquad --
- The value of the next digit is \qquad
\qquad hundreds, \qquad tens and
partitioning place value columns
ten-thousands thousands hundreds tens ones exchanged value digit equal to number line label placement multiples
midpoint multiples
midpoint start/end point intervals whole worth difference

YEAR 5

Key

 ens
ones.

- The difference in value between the start and end point is \qquad -.
- There are \qquad intervals.
- The number line is counting up in \qquad .

Maths - Place Value

Small Steps:

1. Roman numerals to 1,000.
2. Numbers to 10,000 .
3. Numbers to 100,000 .
4. Numbers to $1,000,000$.
5. Read and write numbers to 1,000,000.
6. Powers of 10.
7. $10 / 100 / 1,000 / 10,000 /$ 100,000 more or less.
8. Partition numbers to 1,000,000.
9. Number line to 1,000,000.
10. Compare and order numbers to 100,000.
11. Compare and order numbers to $1,000,000$.
12. Round to the nearest 10,100 or 1,000 .
13. Round within 100,000
14. Round within 1,000,000.

Key Questions:

- Which digit in each number has the greatest value?
- What are the values of these digits?
- When comparing two numbers with the same number of digits, if the first digits are equal in value, what do you look at next?
- What is the difference between ascending and descending order?
- What is different about comparing number with the same number of digits and comparing numbers with different number of digits?
- Put the numbers in order, starting with the smallest.

You can use the number line to help you.

Stem Sentences:

- The first place value column I need to look at is ___. - ___ is greater/less than \qquad so \qquad is greater/less than

YEAR 5

Key

Vocabulary:
comparing ordering
hundred thousand place value number lines digits pairs sets of
Roman numerals greatest greater smallest less than value equal difference ascending descending

Write the numbers in ascending order.

Maths - Place Value

YEAR 5

Key Questions:

- Which digit in each number has the greatest value? What are the values of these digits?
- When comparing two numbers with the same number of digits, if their first digits are equal in value, what do you look at next?
- What is the difference between ascending and descending order?
- What is different about comparing numbers with the same number of digits and comparing numbers with different numbers of digits?

> List the towns and cities in descending order of population.

Town or city	Population
Halifax	88,134
Brighouse	32,360
Leeds	792,925
Huddersfield	146,234
Wakefield	343,932
Bradford	536,986

Stem Sentences:

- The first place value column I need to look at is ___.
\qquad is greater/less than \qquad , SO \qquad is greater/less than

Key

Vocabulary:
compare order million
number lines increasing value position horizontal digit greatest greater less than equal difference ascending descending place value column

Put the numbers in ascending order.
You can use the number line to help you.

Maths - Place Value

Small Steps:

1. Roman numerals to 1,000.
2. Numbers to 10,000 .
3. Numbers to 100,000 .
4. Numbers to $1,000,000$.
5. Read and write numbers to $1,000,000$.
6. Powers of 10.
7. $10 / 100 / 1,000 / 10,000 /$

100,000 more or less.
8. Partition numbers to 1,000,000.
9. Number line to 1,000,000.
10. Compare and order numbers to 100,000 .
11. Compare and order numbers to $1,000,000$.
12. Round to the nearest 10,100 or 1,000 .
13. Round within 100,000.
14. Round within 1,000,000.

Mark the position of 728 on the number line.

Use the number line to round 728 to the nearest 10
Now estimate the position of 728 on this number line.

Which numbers round to 4,600 to the nearest 100 ?

Complete the number line.

Between which two multiples of 100,000 does 735,292 lie? Round 735,292 to the nearest 100,000

Round each number to the nearest 10,000

Key Questions:

- Which multiples of $10 / 100 / 1,000 / 10,000 / 100,000$ does the number lie between?
- Which multiple on the number line is the number closer to?
- What is the number rounded to the nearest 10/100/1,000/10,000/100,000?
- Which place value column should you look at to round the number to the nearest $10 / 100 / 1000 / 10,000 / 100,000$?
- What happens when a number is exactly halfway between two numbers on a number line?
- Which division on the number line is the number closer to?
- What happens if a number lies exactly halfway between two multiples of 10,000 ?
- How can you represent the rounding of this number on a number line?
- What is the most appropriate way of rounding this number?

Vocabulary:

rounding
ten hundred
thousand
ten-thousand hundred-thousand million rounding to the nearest number line multiples closer to closer to
place value halfway
column halfway
column midpoint digit digit
division power of 10 approximations

YEAR 5

Key

Stem Sentences:

- The previous multiple of $10 / 100 / 1,000 / 10,000 / 100,000$ is \qquad -
- The next multiple of $10 / 100 / 1,000 / 10,000 / 100,000$ is \qquad .
- ___ is closer to \qquad than \qquad _. rounded to the nearest $10 / 100 / 1,000 / 10,000 / 100,000$ is

[^0]-
\square _.

Maths - Addition and Subtraction

YEAR 5

Small Steps:

1. Mental strategies.
2. Add whole numbers with more than four digits.
3. Subtract whole numbers with more than 4 digits.
4. Round to check answers.
5. Inverse operations (addition and subtraction).
6. Multi-step addition and subtraction problems.
7. Compare calculations
8. Find missing numbers.

Use the fact that $8+4=12$ to work out the additions.

- $8,000+4,000$
$-800+400$
$-80,000+40,000$

Use the place value chart to help you work out the subtractions.

Use the number line to help you work out the calculations.

- $1,050+100$
- 1,050-100

Key Questions:

- How does knowing that $2+5=7$ help you to work out $20,000+50,000$?
- How can the numbers be partitioned to help add/subtract them?
- Are any of the numbers multiples of powers of 10? How does this help you to add/subtract them?
- What number is 999 close to? How does that help you to add/subtract 999 from another number?

Work out the calculations.

Key

Vocabulary:
mentally calculate sums
differences partitioning number bonds place value add subtract multiples powers of 10 forwards backwards
formal written method strategies close to

The number line shows a method for adding 99 mentally. $+100$

[^1]Use a similar number line to help you subtnact 99 from 687
\qquad thousands and \qquad housands \qquad ones, so the sum

- The sum of \qquad ones and tho
\qquad
\qquad and \qquad and add
- I can partition the number into the parts separately.

Maths - Addition and Subtraction

Small Steps:

1. Mental strategies.
2. Add whole numbers with more than four digits.
3. Subtract whole numbers with more than 4 digits.
4. Round to check answers.
5. Inverse operations (addition and subtraction).
6. Multi-step addition and subtraction problems.
7. Compare calculations
8. Find missing numbers.

Ron uses place value counters to calculate $4,356+435$

Use the column method to work out the additions.

Key Questions:

- Does it matter which number goes at the top when using the column method?
- Will you need to make an exchange? Which columns will be affected if you do? How do you know?
- Does it matter if the numbers have different numbers of digits?
- How do you know which digits to "line up" in the calculation?
- How do you know if the calculation is an addition?

Find the answers to the calculations.

In each case decide whether a mental method or written method is more appropriate.

$$
63,800+2,002
$$

What mistake has been made?

$1,562+301=4,572$

YEAR 5

Key

Vocabulary:
column method addition 4-digits place value calculations exchange columns digits figures rounding estimate

Stem Sentences:

- In column addition, we start from the place value column that has the \qquad value.
- The \qquad is in the \qquad column. It represents \qquad -

Maths - Addition and Subtraction

Small Steps:

1. Mental strategies.
2. Add whole numbers with more than four digits.
3. Subtract whole numbers with more than 4 digits.
4. Round to check answers.
5. Inverse operations (addition and subtraction).
6. Multi-step addition and subtraction problems.
7. Compare calculations
8. Find missing numbers.

Work out the missing numbers.

Use the place value chart and the column method to help you.

Use the column method to work out the subtractions

Work out the missing numbers.

Key Questions:

- Which numbers goes at the top when using column method? Does this affect the final answer?
- Will you need to make an exchange? Which columns will be affected if you do? How do you know?
- Does it matter if the numbers have different numbers of digits?
- How do you know which digits to "line up" in the calculation?
- How do you know if the calculation is a subtraction?

> In each case, decide whether a mental method or written method is more appropriate.

$$
12,000-2
$$

$$
46,312-15,000
$$

$90,000-23,518$

Stem Sentences:

- In column subtraction, we start from the place value column that has the \qquad value.
- There are not enough \qquad , so I need to exchange 1 \qquad for 10 \qquad .

Maths - Addition and Subtraction

Small Steps:

1. Mental strategies.
2. Add whole numbers with more than four digits.
3. Subtract whole numbers with more than 4 digits.
4. Round to check
answers.
5. Inverse operations (addition and subtraction).
6. Multi-step addition and subtraction problems.
7. Compare calculations
8. Find missing numbers.

Mo has completed an addition.

$$
31,207+6,529=96,497
$$

Use an estimate to show that Mo must have made a mistake.

Round the numbers to find an estimate of the answer to $6,789+2,870$
6,789 rounded to the nearest 1,000 is \qquad
2,870 rounded to the nearest 1,000 is \qquad
The estimated total is \qquad $+$ \qquad $=$
Compare the estimate with the actual answer.

Round each number to the nearest 100,000 to estimate the answers to the calculations.

$$
517,000+289,000
$$

517,000-289,000

$$
126,539+723,628
$$

Key Questions:

- Which multiples of __ does the number lie between?
- Which division on the number line is the number closer tol
- What is the number rounded to the nearest ___?
- What place value column should we look at to round the number to the nearest $10 / 100 / 1,000 / 10,000 / 100,000$?
- How could you use your estimates to check your answers?
- Is the actual answer going to be greater or less than your estimate? Why?

Mrs Khan wants to buy a laptop, a monitor and a keyboard.

The table shows the number of tickets sold by an airline during a three-month period.

Month	Tickets sold
February	18,655
March	31,402
April	27,092

- Work out the total number of tickets sold in February and March.
Use an estimate to check your answer.

Stem Sentences:

- The previous multiple of \qquad is \qquad
- The next multiple of \qquad is \qquad is \qquad _.
rounded to the nearest
\qquad _.
- The approximate answer is
 \section*{YEAR 5
 \section*{YEAR 5

 Key

 Key

 Vocabulary:

 Vocabulary:

 R 5}

 R 5}
rounding estimate addition subtraction
mental strategy approximate accuracy calculation multiples division number line closer to place value column greater than less than culation column

Maths - Addition and Subtraction

YEAR 5

Small Steps:

1. Mental strategies.
2. Add whole numbers with more than four digits.
3. Subtract whole numbers with more than 4 digits.
4. Round to check answers.
5. Inverse operations (addition and subtraction).
6. Multi-step addition and subtraction problems.
7. Compare calculations
8. Find missing numbers.

Write two additions and two subtractions shown by the bar model.

647	
289	358

Aisha works out an addition.
$65+78=143$

Key Questions:

- If I add a number to another to get a total, what do you need to do to the total to find my original number?
- If I subtract a number from another to find the difference, what do you need to do to the difference to find my original number?
- What does an inverse operation do?
- What operation is the inverse of addition?
- What operation is the inverse of subtraction?

Complete the bar model.

Check your answer using a subtraction.

Stem Sentences:

- The inverse of \qquad is
- To check that I have added/subtracted ___ correctly, I need to

In the number pyramid, each number is the sum of the two numbers below.
Use addition and subtraction to complete the pyramid.

Key

Vocabulary:
addition
subtraction inverse
operations
commutative
bar models
part-whole
fact families accuracy equations total
difference
\qquad _.

Maths - Addition and Subtraction

Small Steps:

1. Mental strategies.
2. Add whole numbers with more than four digits.
3. Subtract whole numbers with more than 4 digits.
4. Round to check answers.
5. Inverse operations (addition and subtraction).
6. Multi-step addition and subtraction problems.
7. Compare calculations
8. Find missing numbers.

Filip is writing a report.
He writes the first 460 words on Monday and another 735 words on Tuesday.
The report must be at least 2,500 words long.
How many more words does Filip need to write?

Year 5 and Year 6 are going on a school trip.
The school has a bus with 56 seats and a minibus with 17 seats.
There are 44 people in the Year 5 group and 38 people in the Year 6 group.

How many more seats are needed for both groups to go on the trip?

The sum of two numbers is 11,339
The difference between the numbers is 1,209
Use the bar model to help you find the two numbers.

Key Questions:

- What is the key information in the question?
- What can you work out straight away? How does this help you to answer the question?
- How can you represent this problem using a bar model? Which bar will be longer? Why?
- Do you need to add or subtract the numbers at this stage? How do you know?
- How can you check your answer?

Mr Rose is buying items for his home.
He has a budget of $£ 1,500$

He buys a washing machine and a tumble dryer.
Does he have enough money left to buy the dishwasher?

Stem Sentences:

- The first step in solving the problem is...
- When I know \qquad I can then \qquad _-.
- To check my answer, I can...

YEAR 5

Vocabulary:

addition subtraction multi-step operations calculations mental/written method bar model division inverse approximations

Maths - Addition and Subtraction

Small Steps:

1. Mental strategies.
2. Add whole numbers with more than four digits.
3. Subtract whole numbers with more than 4 digits.
4. Round to check answers.
5. Inverse operations (addition and subtraction).
6. Multi-step addition and subtraction problems.
7. Compare calculations
8. Find missing numbers.

Key Questions:

- What is the same and what is different about the numbers in the two calculations?
- Which digits have changed and which have stayed the same?
- How will the answer change if you increase one of the numbers by \qquad ?
Use the bar model to explain your answer.

Which calculation has the greater answer?

983-410	983-510
How do you know?	

Put the addition cards in order of size, starting with the one with the greatest answer.
 $463+327$

Stem Sentences:

- If I add/subtract \qquad to/from one of the numbers in the calculation, the answer will change by \qquad -.
- If I add/subtract ___ to/from both of the numbers in the calculation, the answer will change by \qquad

YEAR 5

Key

 Vocabulary:compare calculations comparison structure adding subtracting bar model relationships 2-digit
3-digit same different increase/decrease

Maths - Addition and Subtraction

Small Steps:

1. Mental strategies.
2. Add whole numbers with more than four digits.
3. Subtract whole numbers with more than 4 digits.
4. Round to check answers.
5. Inverse operations (addition and subtraction).
6. Multi-step addition and subtraction problems.
7. Compare calculations
8. Find missing numbers.

Complete the calculations.

> $-100=5,823$

- $5,423+\square=5,823$

Complete the calculations.
Use the bar models to help you.
$97+54=100+$ \qquad
$56+229=$ \qquad $+100$

97	54
100	

56	229
229	

Complete the calculations.
Use the number lines to help you.

Key Questions:

- What is the same and what is different about the numbers in the two calculations?
- If the two additions/subtractions have the same result, what does that tell you about the numbers in the additions/subtractions?
- If you increase/decrease the first number by \qquad what do you need to do to the second number for the total/difference to stay the same?

Match the calculations that have the same results.

Key

 Vocabulary:inverse operations missing number calculation comparing increased difference total decreased bar models number lines estimate approximate sense-checking same different addition subtraction

Use the first bar model to work out the missing number in the second bar model.

570	
372	

Maths - Multiplication and Division A

Small Steps:

1. Multiples
2. Common multiples.
3. Factors
4. Common factors.
5. Prime numbers.
6. Square numbers.
7. Cube numbers.
8. Multiply 10, 100 and 1000.
9. Divide by 10, 100 and 1,000.
10. Multiples of 10,100 and 1,000.

- Here are the first three multiples of 5

Use counters to make these and the next three multiples of 5
List the first six multiples of 5
What is the same and what is different about the multiples of 5 ?

- How can you tell by looking at a number if it is a multiple of 5 ? Which of these numbers are multiples of 5 ?

Which of the numbers are also multiples of 10 ?
Write the numbers in the sorting diagram.

Key Questions:

- How do you find the multiples of a number?
- What do you notice about the multiples of \qquad _?
- What is the same and what is different about them?
- Can a number be a multiple of more than one number?
- How can you tell if a number is a multiple of $2 / 5 / 10$?
- What does the word "divisible" mean? How does it link to multiples?
- Are multiples of $8 / 4$ also multiples of $4 / 8$?
- How do you find the multiples of a number?
- What multiples do \qquad and \qquad have in common?
- What is the first multiple that \qquad and \qquad have in common?
- How can you tell if a number is a multiple of \qquad ?
- Given any two numbers, can you always find a common multiple? How?

Stem Sentences:

- A multiple is the result of multiplying a number by \qquad .
- The first multiple of a number is always
 is a multiple of \qquad becaus \qquad x \qquad $=$ \qquad
\qquad X
- ____ is a common multiple of \qquad and \qquad because x
- The first common multiple of \qquad and \qquad is \qquad _

YEAR 5

Key

 Vocabulary:multiples
times-table positive integer rules of divisibility arrays same
different divisible common multiples pair LCM

- Sort the numbers from 1 to 30 into the table.

	Multiple of 7	Not a multiple of 7
Multiple of 4		
Not a multiple of 4		

Maths - Multiplication and Division A

Small Steps:

1. Multiples
2. Common multiples.
3. Factors
4. Common factors.
5. Prime numbers.
6. Square numbers.
7. Cube numbers.
8. Multiply 10, 100 and 1000.
9. Divide by 10, 100 and 1,000.
10. Multiples of 10,100 and 1,000 .

The array shows that 4 and 5 are factors of 20

How many other arrays can you make using 20 counters? Use your arrays to find all the factors of 20

Which numbers are factors of 60 ?

Which factors of 60 are not shown?

Tiny has found the factors of 36

Why does Tiny put a cross next to 5 ? Why does Tiny stop after 6 ?

Key Questions:

- How do you find the factors of a number?
- How can you be sure you have found all the factors of a number?
- How can you work in a systematic way to find all the factors of a number?
- Do factors always come in pairs?
- Can a number be both a factor and a multiple of the same number?
- Which numbers are factors of both the numbers?
- Which are the common factors of the numbers?
- On a sorting diagram, where can you see the common factors of the numbers?

YEAR 5

Key

Vocabulary:
factors
factor pairs multiplied multiplication division
multiple products powers of 10 common factors comparing array divisibility

Write the numbers in the sorting diagram.

- Why does any pair of numbers have at least one common factor?
- Can one of the numbers be a common factor? When does this happen?

Stem Sentences:

\qquad is a factor of \qquad because \qquad \times \qquad
\qquad -
\qquad is a factor of \qquad because \qquad \div \qquad $=$ \qquad
\qquad times-table.
, factor ofbecause \qquad is in the
\qquad
\qquad is a factor of \qquad and a factor of \qquad , so \qquad is a common factor of

- The common factors of \qquad and \qquad are \qquad .

Maths - Multiplication and Division A

Small Steps:

1. Multiples.
2. Common multiples.
3. Factors.
4. Common factors.
5. Prime numbers.
6. Square numbers.
7. Cube numbers.
8. Multiply 10, 100 and 1000.
9. Divide by 10, 100 and 1,000.
10. Multiples of 10,100 and 1,000 .

Key Questions:

- How many factors does the number have?
- How can you be sure you have found all the factors?
- What is the difference between a prime number and a composite number?
- How can you tell if a number is a multiple of $2 / 3 / 5$?
- How can you check if a number is a prime?
- How many factors does the number have?
- How many prime factors does the number have?

YEAR 5

Key

Vocabulary:
factors prime numbers composite numbers times-table facts
rule of divisibility multiple

Sort the numbers into the table.

Use your knowledge of multiples and factors to decide whether each number is prime.

Maths - Multiplication and Division A

Small Steps:

1. Multiples
2. Common multiples.
3. Factors.
4. Common factors.
5. Prime numbers.
6. Square numbers.
7. Cube numbers.
8. Multiply 10, 100 and 1000.
9. Divide by 10, 100 and 1,000.
10. Multiples of 10,100 and 1,000 .

Tiny is using counters to make square numbers.

Do you agree with Tiny?
Explain your answer.

Key Questions:

- Why are square numbers called "square" numbers?
- How do you work out \qquad squared?
- How do you write \qquad squared?
- Is 1 a square number? Why or why not?
- Are the squares of odd numbers even or odd?
- Are the squares of even number even or odd?
- Why are cube numbers called "cube" numbers?
- How do you work out \qquad cubed?
- How do you write \qquad cubed?
- Is 1 a cube number? Explain your answer.
- Are the cubes of odd numbers even or odd?
- Are the cubes of even numbers even or odd?

Key

Stem Sentences:

- A square number is the result of multiplying a number by \qquad .

Size of cube	Calculation	Number of cubes	- A squa
1^{3}		1	

- The cube of a number is the result of multiplying the number by \qquad and then by \qquad again.
- ___
\square
\qquad cubed means \qquad - \times \qquad x
\qquad x \qquad $=$ \qquad and is the cube number \qquad .

Maths - Multiplication and Division A

Small Steps:

1. Multiples.
2. Common multiples.
3. Factors.
4. Common factors.
5. Prime numbers.
6. Square numbers.
7. Cube numbers.
8. Multiply 10, 100 and 1000.
9. Divide by 10, 100 and 1,000.
10. Multiples of 10,100 and 1,000.

Key Questions:

- In what direction do the digits move when you multiply by 10/100/1000?
- How many places to the left do the digits move when you multiply by 10/100/1000?
- When you have an empty place value column, what digit do you use as a placeholder?
- How can you use the result of multiplying by 100 to help you multiply a number by 1,000 ?
- What direction do the digits move when you divide by 10/100/1000?
- How many places to the right do digits move when you divide by 10/100/1000?
- How is dividing by 10,100 or 1000 linked to multiplying by 10, 100 or 1000 ?
- How can you use the result of dividing by 100 to help you divide a number by 1000?
- What does inverse mean?

Stem Sentences:

- ___ multiplied by 10/100/1000 is equal to \qquad _.
- \qquad is $10 / 100 / 1000$ times the size of \qquad
\qquad tens/hundreds.
- There were \qquad ones/tens. Now there are
\qquad twice.
- Multiplying by 100 is the same as multiplying by
\qquad -
- ___ divided by $10 / 100 / 1000$ is equal to he size of \qquad __.
- There were ___ tens/hundreds. Now there are ___ ones/tens.
\qquad

YEAR 5

Key

 Vocabulary:multiplying whole number ten
hundred thousand place value Gattegno digits rows/columns twice
three times
10 times the size
100 times the size
1000 times the size dividing direction
digits
placeholder
one-tenth the size one-hundredth the size one-thousandth the size
inverse
operations
$604,000 \div 100=$ \qquad

Maths - Multiplication and Division A

Small Steps:

1. Multiples.
2. Common multiples.
3. Factors.
4. Common factors.
5. Prime numbers.
6. Square numbers.
7. Cube numbers.
8. Multiply 10, 100 and 1000
9. Divide by 10, 100 and 1,000.
10. Multiples of 10, 100 and 1,000.

Find a number for each clue.

- a multiple of 30 that is between 100 and 200
- a multiple of 40 that is between 300 and 400
- a multiple of 500 that is between 4,000 and 5,000

Explain your answer.

Key Questions:

- Will multiplying/dividing by 20 give an answer that is less than or greater than multiplying/dividing by 10 ? Why?
- How can your break down multiplying/dividing by \qquad into steps using powers of 10 ?
- What is the same and what is different about the two calculations?
- How can you use inverse operations to find related calculations?
- When do numbers have common multiples that are lower than their product?

The diagram shows that $7,200 \div 200=36$

Stem Sentences:

- ___ $=$ \qquad x \qquad so to multiply by \qquad you can first multiply by and then by \qquad -
\qquad you can first divide by

Find the correct answer.

YEAR 5

Key

Vocabulary:
multiply divide multiples ten hundred thousand factors calculation commutative law order times-tables powers of 10 less than greater than inverse operations product and then by \qquad _.

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a non unit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1.
7. Order fractions less than 1.
8. Compare and order fractions greater than 1.
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions.
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

Key Questions:

Take two pieces of paper that are the same size. Fold one piece into 2 equal parts and the other piece into 8 equal parts.
Explain how the pieces of paper show that $\frac{1}{2}=\frac{4}{8}$
Use more pieces of paper to find other fractions equivalent to one half

How do the number lines show that $\frac{1}{5}$ is equivalent to $\frac{2}{10}$?

Use the bar model to complete the equivalent fractions.

Stem Sentences:

- A fraction is a unit fraction if the
- The numerator has been multiplied/divided by
- What is a unit fraction?
- When are two fractions equivalent?
- How can you use the model/diagram to see if the two fractions are equivalent?
- How do you use a fraction wall to find equivalent fractions?
- What multiplication/division facts can you use?
- How can you use your knowledge about unit-fractions to help with non-unit fractions?

How do the number lines show that $\frac{2}{5}$ is equivalent to $\frac{4}{10}$?

 be equivalent.

- The denominator is \qquad so the fractions are \qquad
- I know that \qquad is equivalent to

YEAR 5

Key
 Vocabulary:

equivalent fractions unit fractions number line fraction wall times-table numerators denominators horizontally/vertically multiplication division non-unit fraction add
subtract
\qquad is equal to \qquad _.
\qquad , so if the denominator is multiplied/divided by ___, then the fractions will times the numerator in both fractions, ane hamerorin boih fractions,
\qquad because ...

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a nonunit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1.
7. Order fractions less than 1.
8. Compare and order fractions greater than 1.
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions.
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

Alex has shown that $\frac{1}{3}$ is equivalent to $\frac{6}{18}$

Mo has shown that $\frac{4}{12}$ is equivalent to $\frac{1}{3}$

Tiny is working out equivalent fractions.

Show that Tiny is correct.

Key Questions:

- What does "equivalent" mean?
- When are two fractions equivalent?
- How can you use a fraction wall to check if the fractions are equivalent?
- What are the common factors of the numerator and denominator?
- Are there any other factors you could use?
- What is the relationship between the numerator and the denominator of the fractions?

Key

equivalent fractions
common factors multiples numerator
denominator
multiplicative relationship simplifying
fraction wall divide multiply Use the number cards to complete the equivalent fractions.

Are the fractions equivalent?

Explain your answer.

Stem Sentences:

- ___ is a common factor of the numerator and the denominator, so I can divide both of these by \qquad to find an equivalent fraction.
- The numerator/denominator has been multiplied by \qquad so the denominator/numerator should also be \qquad by \qquad , .

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a nonunit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1.
7. Order fractions less than 1.
8. Compare and order fractions greater than 1.
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions.
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

The bar model shows that $1=\frac{6}{6}$

Work out the missing numbers.

The bar models shows that $2=\frac{10}{5}$

Work out the missing numbers.

Each circle represents one whole.

Each bar model represents one whole.

Show $1 \frac{2}{3}$ and $2 \frac{1}{3}$ on the number line.

Key Questions:

- How many \qquad are there in one whole?
- How many are there in 2/3/4 wholes?
- What does each part of a mixed number represent?
- What is an improper fraction?
- How many cubes do you need to represent the improper fraction? How can you use the cubes to make wholes? What do the remaining cubes represent?
- How many \qquad are the in \qquad wholes?
How many \qquad are there altogether in the mixed number? How can you write this as an improper fraction?
- How many cubes do you need to represent the mixed number? How many cubes do you need for each whole? How many more cubes do you need? How many cubes do you need altogether?

YEAR 5

Key

Vocabulary:
improper fraction numerator greater
equal
denominator mixed number integer proper fraction converting division
remainders whole part
regroup add

Stem Sentences:

- There are \qquad in one whole, so there are \qquad in \qquad wholes.
- I can regroup \qquad to make \qquad wholes with \qquad parts left over. As a mixed number, this is \qquad and \qquad —.
- Each whole can be split into \qquad -.
- The wholes are equal to \qquad altogether.
- There are another \qquad so the mixed number is \qquad as an improper fraction.

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a nonunit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1
7. Order fractions less than 1.
8. Compare and order fractions greater than 1.
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions.
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

Use the bar models to compare the fractions.

Tommy uses bar models and equivalent fractions to compare $\frac{3}{4}$ and $\frac{5}{8}$

Which is the greater fraction, $\frac{3}{4}$ or $\frac{5}{8}$? How do you know?

Write $<,>$ or $=$ to compare the fractions.

Order each set of fractions, from smallest to greatest.

20	$\frac{9}{10}$	$\frac{9}{100}$	$\frac{9}{1000}$	$\frac{9}{15}$	$\frac{9}{40}$

Key Questions:

- If two fractions have the same
denominator/numerator, how can you decide which is greater?
- How can you use equivalent fractions to help?
- How can you use a diagram to find equivalent fractions? Do the bars need to be the same size?
- If a set of fractions all have the same denominator, how can you tell which is greatest?
- How can you use equivalent fractions to help?
- What are all the denominators/numerators multiples of? How can this help you find equivalent fractions?
- Which of the fractions are greater than $1 / 2$?

Fill in the boxes to make the statement true.

$$
\frac{3}{8}<\frac{\square}{\square}<\frac{3}{4}
$$

Complete the statement in two different ways.

Stem Sentences:

- ___ is greater than one half, and \qquad is less than one half, so \qquad is greater than \qquad _.
- When two fractions have the same denominator, the one with the
\qquad numerator is the greater fraction.
- When two fractions have the same numerator, the one with the \qquad denominator is the greater fraction.

YEAR 5

Key Vocabulary:

equivalent fractions compare
denominators same multiple numerator position one-half larger greater smaller less than equal
fraction wall bar model ordering converting/conversions compare

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a nonunit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1.
7. Order fractions less than 1.
8. Compare and order fractions greater than 1.
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions.
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

Key Questions:

- How can you represent the fractions?
- What does the number of wholes tell you about the overall sizes of the numbers?
- Do you need to make any conversions?
- How do you convert from an improper fraction/mixed number to a mixed number/improper fraction?
- How can you use your knowledge of multiples to help?

Use the bar models to compare $\frac{7}{6}$ and $\frac{5}{3}$

\qquad

YEAR 5

Key

Vocabulary:
converting compare order
fractions greater wholes different fractional parts equal denominators numerators multiple conversions improper fraction mixed number

Who has eaten more pizza?
Explain how you know.

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a nonunit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1.
7. Order fractions less than 1.
8. Compare and order fractions greater than 1
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions.
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

Use the bar model to complete the calculation.

Use the bar model to help you work out $\frac{9}{5}-\frac{6}{5}$

> Work out the missing numbers.

- $\frac{3}{7}+\frac{\square}{7}=\frac{9}{7}$
$\frac{3}{11}+\frac{\square}{11}=\frac{15}{11}$

- $\frac{\square}{5}-\frac{3}{5}=\frac{4}{5}$

A chocolate bar has 12
equal pieces.

Key Questions:

- How can you represent this calculation using a bar model?
- Will you need more than one bar? How do you know?
- How many parts do you split the bar (s) into?
- What could you do if the answer is an improper fraction?
- What type of calculation is this?
- When adding/subtracting fractions with the same denominators, what will the denominator of the answer be? Why?

$$
\begin{aligned}
& \text { A flag is made from different-coloured parts. } \\
& \text { - } \frac{2}{15} \text { of the flag is blue. } \\
& \text { - } \frac{7}{15} \text { of the flag is red. } \\
& \text { - } \frac{1}{15} \text { of the flag is green. }
\end{aligned}
$$

What fraction of the flag is blue, red or green?
The rest of the flag is white.
What fraction of the flag is white?

Stem Sentences:

- __ fifths add/subtract \qquad fifths is \qquad fifths.
- When adding/subtracting fractions with the same denominators, I just add/subtract the \qquad _.

$$
\begin{aligned}
& \text { - Amir eats } \frac{5}{12} \text { more of the bar } \\
& \text { than Whitney. } \\
& \text { - There is } \frac{1}{12} \text { of the bar left. }
\end{aligned}
$$

What fraction of the bar does Amir eat?
What fraction of the bar does Whitney eat?

YEAR 5

Key

Vocabulary:
add
subtract
denominator
pairs
numerators
bar model
improper fractions simplified calculation
parts
whole

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a nonunit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1.
7. Order fractions less than 1.
8. Compare and order fractions greater than 1.
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions.
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

Scott is working out $\frac{1}{2}+\frac{1}{8}$
He uses a diagram to represent the sum.

Rosie uses a bar model to work out $\frac{1}{4}+\frac{3}{8}$

What common denominator would you use to work out each addition?

Nijah uses a bar model to work out $\frac{2}{5}+\frac{1}{10}+\frac{3}{20}$

Key Questions:

YEAR 5

Key

 Vocabulary:
add

- Do the fractions have the same denominator?
- What does it mean for two fractions to be equivalent?
- How can you tell when two fractions are equivalent?
- Why do the denominators need to be the same?
- How can you find a common denominator?
- How many of the fractions do you need to convert?
- Now the denominators are the same, how do you add the fractions?

Work out the missing numbers

$$
\begin{aligned}
& \frac{5}{16}+\frac{\square}{8}=\frac{15}{16} \\
& \frac{\square}{20}+\frac{7}{10}=\frac{17}{20}
\end{aligned}
$$

Tommy adds three fractions with different denominators.

What three fractions could he have added?

Stem Sentences:

- Fractions must have the same \qquad before you can add them.
- The denominator has been multiplied by \qquad so the numerator needs to be multiplied by ___ for the fractions to be equivalent.

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a nonunit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1.
7. Order fractions less than 1.
8. Compare and order fractions greater than 1.
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions.
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

Dora uses a bar model to add $\frac{3}{4}$ and $\frac{5}{8}$

Here is Mo's method for adding three fractions with different denominators.

Kim uses the diagram to add three fractions.

What could her fractions be?
How many different combinations can you find?

Use the clues to work out the three fractions.

Key Questions:

- Do the fractions have the same denominator?
- How can you find a common denominator?
- How many of the fractions do you need to convert?
- Now the denominators are the same, how do you add the fractions?
- How can you tell the answer is greater than one whole?
- How can you convert the answer to a mixed number?

YEAR 5

Key

Vocabulary:

add
fractions
denominator
common denominator multiple greater improper fractions convert
mixed number whole part
regroup
left over

The sum of three fractions is $2 \frac{1}{8}$

- All the fractions have different denominators.
- None of the fractions are smaller than one half.
- None of the fractions are improper.
- All three denominators are factors of 8

> Work out the missing numbers.

$$
\frac{7}{10}+\frac{\square}{5}=1 \frac{3}{10} \quad-\frac{3}{4}+\frac{7}{8}+\frac{\square}{8}=2 \quad-3 \frac{1}{12}=\frac{\square}{12}+\frac{2}{3}+\frac{5}{6}
$$

Stem Sentences:

- I am going to make all of the denominators \qquad .
- I can regroup \qquad to make \qquad wholes with \qquad parts left over. As a mixed number, this is \qquad and \qquad

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a nonunit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1.
7. Order fractions less than 1.
8. Compare and order fractions greater than 1.
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions.
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

Key Questions:

- How can you partition a mixed number?
- How can the addition be written so that similar parts are next to each other?
- How can the parts be combined to produce a mixed number?
- Do you need to combine whole numbers or fractions?
- Why can you swap the order of the numbers in an addition?
- Are there any improper fractions in the answer? What can you do about this?
- How do you change a mixed number into an improper fraction?
- In this questions, is it easier to deal with mixed numbers or to use improper fractions? Why?

$$
1 \frac{3}{4}+2 \frac{1}{8}=\frac{7}{4}+\frac{17}{8}=\frac{14}{8}+\frac{17}{8}=\frac{31}{8}=3 \frac{7}{8}
$$

Stem Sentences:

YEAR 5

Key

Vocabulary:
add
whole number part
fractional part mixed number partitioned recombining sum
cross a whole combined produce fractions order converting separately efficient improper fractions equivalent simplified denominators multi-step

- A mixed number can be partitioned into a \qquad part and a
- The fractional part of the answer is an \qquad so need converting to a \qquad
- The mixed numbers can be partitioned into a \qquad part and a _ part.

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a nonunit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1.
7. Order fractions less than 1.
8. Compare and order fractions greater than 1.
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions.
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

Eva is working out $\frac{1}{3}-\frac{1}{15}$

$$
\text { The number line shows that } \frac{2}{3}-\frac{2}{9}=\frac{4}{9}
$$

Key Questions:

- Do the fractions have the same denominator?
- When are two fractions equivalent?
- How can you find a common denominator?
- How many of the fractions do you need to convert?
- Now the denominators are the same, how do you subtract the fractions?
- How can you represent the problem using a diagram?

Subtract each fraction from
one whole.

What connections can you see between the fractions and your answers?

Stem Sentences:

- Fractions must have the same ___ before they can be subtracted.
- The denominator has been multiplied by \qquad so the numerator needs to be multiplied by \qquad for the fractions to be equivalent.

Maths - Fractions A

Small Steps:

1. Find fractions equivalent to a unit fraction.
2. Find fractions equivalent to a nonunit fraction.
3. Recognise equivalent fractions.
4. Convert improper fractions to mixed numbers.
5. Convert mixed numbers to improper fractions.
6. Compare fractions less than 1.
7. Order fractions less than 1.
8. Compare and order fractions greater than 1.
9. Add and subtract fractions with the same denominator.
10. Add fractions within 1.
11. Add fractions with total greater than 1.
12. Add to a mixed number.
13. Add two mixed numbers.
14. Subtract fractions
15. Subtract from a mixed number.
16. Subtract from a mixed number breaking the whole.
17. Subtract two mixed numbers.

Explain how the diagram shows $3 \frac{5}{8}-2=1 \frac{5}{8}$

What calculation does this diagram show?

Here is a method for working out $2 \frac{3}{4}-\frac{7}{8}$

The diagram illustrates $6 \frac{4}{5}-2 \frac{3}{5}$

Key Questions:

- How can you partition a mixed number?
- Can the subtraction be written in a different form to make it easier?
- If the denominators are different, what do you need to do?
- How can the parts be combined to produce a mixed number?
- Do you need to combine whole numbers or fractions?
- Can you change the order of the numbers in a subtraction?
- Which fraction is greater?
- How can you show the calculation as a diagram/on a number line?
- How can you partition the mixed number? Is there more than one way?
- Is it easier to partition or to convert the mixed number to an improper fraction?
- Is it possible to subtract the whole parts and fractional parts separately? Why or why not?
- Will you need to "break the whole"? Why or why not?
- Does making the whole number greater make the calculation more difficult? Why or why not?

Stem Sentences:

- A mixed number can be partitioned into a __ part and a __ part.
- The difference between the wholes is \qquad .
- The difference between the fractions is \qquad ——.
- ___ can be partitioned into \qquad and \qquad or \qquad and \qquad
- There are \qquad in one whole, so there are \qquad in \qquad _.
- When breaking the whole, the first number can be partitioned into

YEAR 5

Key

Vocabulary:
add
mixed number subtracting whole number part
fractional part
equivalent fractions denominators multiples calculation simplified
Flexible/partition combined produce order difference fraction crossing the whole break the whole

equal

number line convert
\qquad and \qquad

Maths - Fractions B

Small Steps:

1. Multiply a unit fraction by an integer.
2. Multiply a nonunit fraction by an integer.
3. Multiply a mixed number by an integer.
4. Calculate a fraction of a quantity.
5. Fraction of an amount.
6. Find the whole.
7. Use fractions as operators.

Ron uses bar models to work out $\frac{1}{6} \times 4=\frac{4}{6}$

Alex uses a bar model to work out $5 \times \frac{1}{7}=\frac{5}{7}$

Brett uses a bar model to work out $3 \times \frac{2}{7}=\frac{6}{7}$

Dani uses bar models to work out $\frac{2}{7} \times 5=\frac{10}{7}=1 \frac{3}{7}$

Key Questions:

- How can you write this multiplication as a repeated addition? How does this help you to work it out?
- How can you represent this question as a bar model?
- When you multiply a fraction by an integer, what happens to the numerator? What happens to the denominator?
- What is your answer as a mixed number?
- What is it as an improper fraction?
- What happens if the integer you are multiplying by is the same as the denominator? Does this always happen?

Filip uses a number line to work out $\frac{1}{5} \times 6=\frac{6}{5}=1 \frac{1}{5}$

Stem Sentences:

- $\frac{1}{\square} \times \ldots=\frac{1}{\square}+\ldots+\frac{1}{\square}$
- $\frac{\square}{\square} \times-\frac{\square}{\square}+\ldots+\frac{\square}{\square}$
- To multiply a fraction by an integer, I multiply the \qquad by the integer and the \qquad remains the same.

YEAR 5

Vocabulary:

multiplication fractions
unit fractions integer
repeated addition numerator denominator bar models greater than 1 mixed number number line improper fraction

Same

non-unit fractions calculations convert

Maths - Fractions B

Small Steps:

1. Multiply a unit fraction by an integer.
2. Multiply a non-unit fraction by an integer.
3. Multiply a mixed number by an integer.
4. Calculate a fraction of a quantity.
5. Fraction of an amount.
6. Find the whole.
7. Use fractions as operators.

Rosie is working out $1 \frac{1}{5} \times 3$

$$
\text { I know that } 1 \frac{1}{5} \times 3=1 \frac{1}{5}+1 \frac{1}{5}+1 \frac{1}{5}=3 \frac{3}{5}
$$

Amir is working out $3 \times 5 \frac{1}{10}$

Whitney is working out $3 \times 2 \frac{2}{5}$ by partitioning the mixed number into a whole number and a fraction.

$$
\begin{gathered}
3 \times 2=6 \\
3 \times \frac{2}{5}=\frac{6}{5}=1 \frac{1}{5} \\
3 \times 2 \frac{2}{5}=6+1 \frac{1}{5}=7 \frac{1}{5}
\end{gathered}
$$

Key Questions:

- How could you partition this mixed number?
- When you multiply a fraction, what happens to the numerator? What happens to the denominator?
- What do you need to do if you have an improper fraction in your answer?
- Could you work it out another way? Which way is more efficient?
- Have you written your answer in its simplest form?

> Jack runs $2 \frac{2}{3}$ miles three times per week.
> Mo runs $3 \frac{3}{4}$ miles twice a week.

Who runs further during the week?
Explain your answer.

Stem Sentences:

Find the missing numbers.
Scott uses improper fractions to work out $4 \times 1 \frac{3}{8}=5 \frac{1}{2}$

$$
4 \times 1 \frac{3}{8}=4 \times \frac{11}{8}=\frac{44}{8}=5 \frac{4}{8}=5 \frac{1}{2}
$$

Explain how you worked out the missing numbers.

- When I multiply a fraction by an integer, I multiply the
\qquad by the integer and the \qquad remains the same.
- To multiply a mixed number by an integer, I multiply the

YEAR 5

Key

Vocabulary:
multiply
mixed numbers integers
proper fractions efficiency methods convert
fractional part greater than 1 combining totals partition numerator denominator simplest form by the integer and the \qquad by the integer.

Maths - Fractions B

Small Steps:

1. Multiply a unit fraction by an integer.
2. Multiply a non-unit fraction by an integer.
3. Multiply a mixed number by an integer.
4. Calculate a fraction of a quantity.
5. Fraction of an amount
6. Find the whole.
7. Use fractions as operators.

Dora is sharing 16 cookies between 4 friends.
She needs to find $\frac{1}{4}$ of 16

The bar model shows 20 counters shared equally into 5 groups.
Use the bar model to find the fractions of amounts.

Key Questions:

- How can you share the counters equally?
- How do you know the counters are in equal groups?
- If you know $\frac{1}{\square}$ of a number, how do you find $\frac{2}{\square}$ of the number?
- What do you need to do when you cannot share your tens counters equally?
- How do you find a fraction of an amount?
- How can you represent this in a bar model?
- What is the relationship between $\frac{1}{\square}$ of a number and $\frac{2}{\square}$ of a number?
- What is the first step to solve this calculation?
- What is the next step to solve this calculation?
- How can you find a fraction of a 3-digit number?

Stem Sentences:

- If I know $\frac{1}{\square}$ of a quantity, then to find $\frac{\square}{\square}$ I need to multiply by \qquad -

$$
\begin{aligned}
& 35 \div 5-7 \\
& \frac{1}{5} \text { of } 35=7
\end{aligned}
$$

- To find $3 / 4$ of \qquad I need to divide by \qquad and multiply by \qquad _.
- I need to divide by the \qquad and multiply by the \qquad _.
- To find $\frac{\square}{\square}$ of \qquad I need to divide by \qquad and multiply by \qquad _.
- To find a fraction of an amount, I need to divide by the ___ and multiply the result by the \qquad

YEAR 5

Key

Vocabulary:
fraction quantity
sharing
equal groups dividing denominator multiplying numerator
unit fractions amounts
non-unit fractions share equally tens
bar models times-tables calculations fractional part

Maths - Fractions B

Small Steps:

1. Multiply a unit fraction by an integer.
2. Multiply a non-unit fraction by an integer.
3. Multiply a mixed number by an integer.
4. Calculate a fraction of a quantity.
5. Fraction of an amount.
6. Find the whole.
7. Use fractions as operators.

The counters in the bar model show that $\frac{1}{4}$ of a quantity is 5

Use the bar model to work out the fractions of the same quantity.

$$
\frac{4}{4} \text { or } 1 \text { whole }=
$$

\qquad

Eva uses a bar model to help work out the missing amount.

Key Questions:

- What is the same and what is different about finding a fraction of an amount and finding the whole?
- If you know that one equal part is \qquad what must all the other parts be?
- If you know one equal part, how can you work out the whole?
- If you know what ___ equal parts are, how can you find what one part is?
- If your answer going to be greater or less than \qquad _? How ow greater than/less than do you know?

Rosie takes a bottle of water to

A, B and C .
She drinks $\frac{1}{3}$ of the water in
the morning.
She drinks $\frac{1}{4}$ of the bottle at lunchtime.
So far, she has drunk 210 ml of water.
How much water was in her bottle
when it was full?

Stem Sentences:

YEAR 5

Key

Vocabulary:
fraction amount whole unit fraction bar model equal part multiplication non-unit same/different

$$
\frac{5}{8} \text { of } A=\frac{3}{4} \text { of } B=\frac{1}{6} \text { of } C
$$

when it was full?

- If \qquad is one equal part, all the parts must be \qquad -
- If $\frac{1}{\square}$ is \qquad then the whole is \qquad x \qquad $=$ \qquad .
- If \qquad is \qquad parts, then one part is \qquad -

Maths - Fractions B

Small Steps:

1. Multiply a unit fraction by an integer.
2. Multiply a non-unit fraction by an integer.
3. Multiply a mixed number by an integer.
4. Calculate a fraction of a quantity.
5. Fraction of an amount.
6. Find the whole.
7. Use fractions as operators.

$$
5 \text { lots of } \frac{1}{5} \quad \frac{1}{5} \text { of } 5
$$

> $\frac{1}{6} \times 24$

What do you notice?

Key Questions:

- What is the same about \qquad of \qquad and \qquad x \qquad ?
- Is the denominator of the fraction a factor of the number you are multiplying by? Why is this important?
- Which is the most efficient method? How do you know?
- How would you write this improper fraction as a whole number/mixed number?
- When is it more efficient to multiply fractions?
- When is it more efficient to find a fraction of an amount? Match the calculations that give the same answer.

Stem Sentences:

- $\frac{\square}{\square} \mathrm{x}$ \qquad is the same as \square of \qquad _.

Max is thinking of a 2-digit number between 20 and 30 He finds $\frac{2}{3}$ of the number.

\qquad so I can divide \qquad by \qquad -

YEAR 5

Key

Vocabulary:
fractions operators
fraction of an amount
integer multiply patterns
converting
improper whole numbers mixed numbers commutativity efficient method
factors same/different denominator numerator

Maths - Multiplication and Division B

Small Steps:

1. Multiply up to a 4-digit The cinema is fully booked for three showings of a film. number by a 1-digit number.
2. Multiply a 2-digit number by a 2-digit number (area model).
3. Multiply a 2-digit number by a 2-digit number.
4. Multiply a 3-digit number by a 2-digit number.
5. Multiply a 4-digit number by a 2-digit number.
6. Solve problems with multiplication.
7. Short division.
8. Divide a 4-digit number by a 1-digit number.
9. Divide with remainders.
10. Efficient division.
11. Solve problems with multiplication and division.

Ms Fisher earns $£ 1,325$ per week.
How much does she earn in 4 weeks?

$$
342 \times 3=1,026
$$

Stem Sentences:

Key Questions:

- How does multiplication link to addition?
- How can you use counters to represent $284 \times 3=$?
- How does the written method match the representation?
- Which column do you start with?
- Do you need to make an exchange?
- How could you estimate the answer to check your calculation?
- What is the same and what is different about multiplying a 4-digit number by a 1-digit number and multiplying a 3digit number by a 1 -digit number?
- Complete the calculations.
ones x
\qquad $=$ \qquad ones + \qquad tens.

Without calculating, which is greater, 342×4 or 343×3 ?
Explain your answer. tens x $=$ tens + \qquad hundreds. hundreds x \qquad $=$ hundreds + \qquad thousands.
thousands x \qquad thousands + \qquad tenthousands.

YEAR 5

Key

Vocabulary:
formal written method multiply calculation
1-digit
short multiplication
4-digit
place value
exchange
groups
ones
tens
hundreds
thousands
ten-thousands rounding multiples estimates addition multiplication column same/different representation

Maths - Multiplication and Division B

Small Steps:

1. Multiply up to a 4-digit number by a 1-digit number.
2. Multiply a 2-digit number by a 2-digit number (area model).
3. Multiply a 2-digit number by a 2-digit number.
4. Multiply a 3-digit number by a 2-digit number.
5. Multiply a 4-digit number by a 2-digit number.
6. Solve problems with multiplication.
7. Short division.
8. Divide a 4-digit number by a 1-digit number.
9. Divide with remainders.
10. Efficient division.
11. Solve problems with multiplication and division.

The base 10 in this area model represents 23×13

Complete the sentences.
There are ___ hundreds.
There are \qquad tens.

There are \qquad ones.
$23 \times 13=$ \qquad

Aisha uses place value counters and an area model to work out 34×23

\times	-1)	(1) (1) ${ }^{\text {P }}$
$\begin{aligned} & \hline 9 \\ & \bigcirc \\ & \hline 9 \end{aligned}$	$\begin{aligned} & 10 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \hline \bigcirc 0 \\ & \bigcirc \bigcirc \bigcirc \\ & \bigcirc 0 \bigcirc \end{aligned}$
© ㅎ (1) -	$\begin{aligned} & 90 \\ & 90 \\ & 90 \\ & 00 \end{aligned}$	

Dexter uses place value counters and an area model to work out 44×32

\times	$0 \bigcirc 0$	(1)()()()	\times	40	4
$\begin{aligned} & \hline \ominus \\ & \bigcirc \\ & \hline \end{aligned}$	$\begin{aligned} & 90 \\ & 090 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \hline 000 \\ & 0000 \\ & 000 \\ & \hline \end{aligned}$	30	1,200	120
			2	80	8

- How can you partition the numbers?
- What other multiplications can you see?
- Which numbers did you multiply first?
- Once you have completed the area model, what do you need to do to find the total product of the two numbers?
- What is the same and what is different about 2×3 and 20 $\times 30$?
- Does it matter what order you complete the area model in?

What mistake has Eva made?

Explain your answer.

YEAR 5

Key

Vocabulary:
multiplying 2-digit
area model arrays
total product calculation

Stem Sentences:

-
- The products in my area model are
\qquad tens x \qquad $=$ \qquad tens. product is \qquad $+$ \qquad $+$ \qquad $+$ \qquad $=$ \qquad and , so the total

Maths - Multiplication and Division B

Small Steps:

1. Multiply up to a 4-digit number by a 1-digit number.
2. Multiply a 2-digit number by a 2-digit number (area model).
3. Multiply a 2-digit number by a 2-digit number.
4. Multiply a 3-digit number by a 2-digit number
5. Multiply a 4-digit number by a 2-digit number.
6. Solve problems with multiplication.
7. Short division.
8. Divide a 4-digit number by a 1-digit number.
9. Divide with remainders.
10. Efficient division.
11. Solve problems with multiplication and division.

Annie's method

$300+90+20+6=416$
Tom's method

What is the same and what is different about Annie's and Tom's methods?
Complete the calculation to work out 123×23

What are the mistakes in this calculation?

Key Questions:

- What are you multiplying \qquad by first?
- What are you multiplying \qquad by next? Why is this different?
- Why is there a zero in the ones column when multiplying by \qquad ?
- what do you do after you have multiplied both numbers?
- Where do you write the exchanged ones/tens/hundreds?
- Have you included all the exchanges in your totals?
- How can you use rounding to find an estimate for the answer to the calculation?
- What do you need to do to complete the calculation?
- What is the same and what is different about multiplying a 2-digit number by a 2-digit number and multiplying a 3-digit number by a 2 -digit number?

Stem Sentences:

- First, I multiply ___ by ___ ones
- Then I multiply \qquad by \qquad tens.
- Finally, I add together \qquad and \qquad

YEAR 5

Key
 Vocabulary:

formal written method multiplication subtotals totals calculation process zero placeholder column
ones/tens/hundreds
/thousands digits
roundinglestimates exchanged
2-digit/3-digit/4-digit

Maths - Multiplication and Division B

Small Steps:

1. Multiply up to a 4-digit number by a 1-digit number.
2. Multiply a 2-digit number by a 2-digit number (area model).
3. Multiply a 2-digit number by a 2-digit number.
4. Multiply a 3-digit number by a 2-digit number.
5. Multiply a 4-digit number by a 2-digit number.
6. Solve problems with multiplication.
7. Short division.
8. Divide a 4-digit number by a 1-digit number.
9. Divide with remainders.
10. Efficient division.
11. Solve problems with multiplication and division.

Dora and Jack have worked out 46×99

Explain why both methods work.

Arrange the digit cards in the multiplication.

What is the greatest product that can be made?
What is the smallest product that can be made?
What is the difference between the greatest and smallest product?

Key Questions:

- What operation do you need to do? How do you know?
- Why can you multiply the numbers in any order?
- What strategy can you use to solve this problem?
- How do the words in the problem tell you what to do?
- Is there a more efficient method?
- What calculation do you need to do? How do you know?
- Could you have worked it out a different way?

YEAR 5

Key

Vocabulary:
multiplication solve problems formal written method efficient mental strategies known facts derive unknown facts calculate subtract ...lot of...
commutative order operation

Tiny is working out $6,999 \times 99$
 Explain your answer.

Explain your reasoning.

Stem Sentences:

- To calculate ___ $\times 24$, I can do ___ $\times \ldots \times$ \qquad -
- To calculate $9,999 \times$ \qquad , I can do $10,000 \mathrm{x}$ \qquad - ___,
- The most efficient strategy to calculate \qquad x \qquad is ...

Maths - Multiplication and Division B

Small Steps:

1. Multiply up to a 4-digit number by a 1-digit number.
2. Multiply a 2-digit number by a 2-digit number (area model).
3. Multiply a 2-digit number by a 2-digit number.
4. Multiply a 3-digit number by a 2-digit number.
5. Multiply a 4-digit number by a 2-digit number.
6. Solve problems with multiplication.
7. Short division.
8. Divide a 4-digit number by a 1-digit number.
9. Divide with remainders.
10. Efficient division.
11. Solve problems with multiplication and division.

What is the same and what is different about the
two methods for dividing 48 by 4 ?

$$
10+2=12, \text { so } 48 \div 4=12
$$

Sam uses a place value chart and counters to work out $605 \div 5$

Sam exchanges the remaining hundred counter for 10 ten counters.

Ron has worked out 4,892 $\div 4$ using place value counters and short division.

Key Questions:

- Which digit do you divide first?
- How many groups of hundreds/tens/ones are there?
- How can you set out the division using the formal written method?
- When using short division, do you start from the left or the right?
- What do you do if the number you are dividing by does not divide exactly into the first digit?
- When do you need to make an exchange?

YEAR 5

Key

Vocabulary:
formal written method short division part-whole model place value 3-digit/2-digit/1-digit exchange divide groups of thousands hundreds/tens/ones left/right equal to remainder

Stem Sentences:

. \qquad hundreds divided by \qquad is equal to \qquad hundreds with a remainder of \qquad _.

- Exchange the remainder, then \qquad tens divided by \qquad is equal to \qquad tens with a remainder of \qquad
\qquad ones divided by \qquad is equal to
- Exchange the remainder, then \qquad
\qquad ones.
- To use the formal method of division, I start with the digit on the \qquad and work from \qquad to \qquad
- There are ___ groups of \qquad thousands/hundreds/tens/ones in \qquad thousands/hundreds/tens/ones.

Maths - Multiplication and Division B

Small Steps:

Nijah works out $617 \div 3$ using place value counters and a

1. Multiply up to a 4-digit place value chart, and then writes the formal method. number by a 1-digit number.
2. Multiply a 2-digit number by a 2-digit number (area model).
3. Multiply a 2-digit number by a 2-digit number.
4. Multiply a 3-digit number by a 2-digit number.
5. Multiply a 4-digit number by a 2-digit number.
6. Solve problems with multiplication.
7. Short division.
8. Divide a 4-digit number by a 1-digit number.
9. Divide with remainders.
10. Efficient division.
11. Solve problems with multiplication and division.

Scott is is working out $4,894 \div 4$

Find the missing numbers.

Key Questions:

- What does "remainder" mean?
- How can you use your times-tables to know if a division by 2/5 will have a remainder? What other divisibility rules do you know?
- What do you notice about the size of the remainders compared to the number being divided by?
- What is the greatest possible remainder you can get when dividing by \qquad ?
- How do you know this answer is incorrect, just by looking at the size of the remainder?

Amir is thinking of a 3-digit number that is less than 500

Is the statement always true, sometimes true or never true?

Explain your answer

Stem Sentences:

- ___ ones divided by \qquad = \qquad ones remainder \qquad .
- When dividing by \qquad , the greatest possible remainder is \qquad .

YEAR 5

Small Steps:

1. Multiply up to a 4-digit number by a 1-digit number.
2. Multiply a 2-digit number by a 2-digit number (area model).
3. Multiply a 2-digit number by a 2-digit number.
4. Multiply a 3-digit number by a 2-digit number.
5. Multiply a 4-digit number by a 2-digit number.
6. Solve problems with multiplication.
7. Short division.
8. Divide a 4-digit number by a 1-digit number.
9. Divide with remainders.
10. Efficient division.
11. Solve problems with multiplication and division.

Maths - Multiplication and Division B

The array shows that $8 \div 4=8 \div 2 \div 2$

Mo uses factors to work out $810 \div 6$

Here are four different ways of working out $436 \div 4$
Complete the calculation in each method.

Method 1: Partitioning

Method 3: Half and half again
$436 \div$ \qquad
$218 \div 2=$ \qquad

Method 2: Short division

Key Questions:

- Which method do you find the easiest?
- Which method do you find the most efficient?
- How would you explain how this method works?
- What is the most efficient way to divide \qquad by \qquad ?
- What happens if you double one factor and halve the other?
- How can you use factor pairs to help you?
- How can you divide multiples of ten?

Explain your answer.

Stem Sentences:

of 4 along a number line

- To divide by 4, I can divide by __ and then divide the result by
- To divide by 8, I can divide by 2 \qquad times.
- To divide by 6, I can divide by \qquad and then divide the result by

YEAR 5

Vocabulary:

division efficient methods appropriate partitioning known facts factor pairs number lines
formal written method easiest
double/halve multiples result
\qquad .
\qquad _.

Maths - Multiplication and Division B

Small Steps:

1. Multiply up to a 4-digit number by a 1-digit number.
2. Multiply a 2-digit number by a 2-digit number (area model).
3. Multiply a 2-digit number by a 2-digit number.
4. Multiply a 3-digit number by a 2-digit number
5. Multiply a 4-digit number by a 2-digit number.
6. Solve problems with multiplication.
7. Short division.
8. Divide a 4-digit number by a 1-digit number.
9. Divide with remainders.
10. Efficient division.
11. Solve problems with multiplication and division.

A minibus can seat 6 people.
71 people are going on a trip. How many minibuses are needed?
Complete the sentences.

There are \qquad groups of 6 people.

There are___ people left over.
___minibuses are needed.
Textbooks come in packs of 6
A school needs 4,607 textbooks.
How many packs are needed?

What does the remainder represent in this problem?

- Do you need more or fewer boxes/bags? What does the reminder mean here?
- How do you know if you need an extra box/bag?
- How many boxes can be filled? How many boxes do you need?
- Which operation is needed?

- A train has 14 carriages. Each carriage can carry 42 people.
512 people have reserved a seat.
How many unreserved seats are there?

Stem Sentences:

Key Questions:

- What calculation do you need to do? How do you know?

Which operation is needed?

- Dani is filling party bags.

Each party bag has 7 sweets in it. Dani has 349 sweets altogether. How many party bags can she fill?
\qquad \div \qquad $=$ \qquad remainder \qquad

- There are \qquad left over, so \qquad are needed altogether.

YEAR 5

Key

Vocabulary:
multiplication division
solve problems operation bar models remainder equal to calculation more/fewer
add
left over
altogether

Maths - Decimals and Percentages

Small Steps:

1. Decimals up to 2 decimal places.
2. Equivalent fractions and decimals (tenths).
3. Equivalent fractions and decimals (hundredths).
4. Equivalent fractions and decimals.
5. Thousandths as fractions.
6. Thousandths as decimals.
7. Thousandths on a place value chart.
8. Order and compare decimals (same number of decimal places).
9. Order and compare any decimals with up to 3 decimal places.
10. Round to the nearest whole number.
11. Round to 1 decimal place.
12. Understand percentages.
13. Percentages as fractions.
14. Percentages as decimals.
15. Equivalent fractions, decimals and percentages.

Key Questions:

- How can you represent this number using a place value chart?
- What is the same and what is different about a tenth and a hundredth?
- What is the value of the digit \qquad in the number __?
- Can you partition the decimal number \qquad in different ways?
- How many tens are there in 100 ?
- How many ones are there in $10 / 100$?
- How many 0.1 s are there in 1 ?
- How many 0.01s are there in $0.1 / 1$?

Fill in the missing numbers.

- $0.83=$ \qquad $+0.03=$ \qquad tenths and 3 hundredths
- $0.83=0.7+\quad=7$ tenths and $\quad _$_ hundredths How many other ways can you partition 0.83 ?

Use place value counters to make the numbers.
Use the hundred square to complete the sentences.

- One part is worth ___ hundredth, which is written as \qquad
> Five parts are worth ___ hundredths, which is written as \qquad
- The whole square is worth ___ hundredths, which is written as

Huan uses place value counters to make the number 3.14

Ones	Tenths	Hundredths
(1)	(1)	0

YEAR 5

Key

 Vocabulary:tenths
hundredths decimals fractions
2 decimal places thousandths whole
exchange place value value digit partitioning same/different

Stem Sentences:

- ___ tenths/hundredths are equivalent to \qquad wholes/tenths.
- The value of the digit \qquad in the number \qquad is \qquad —.

Maths - Decimals and Percentages

YEAR 5

Small Steps:

1. Decimals up to 2 decimal places.
2. Equivalent fractions and decimals (tenths).
3. Equivalent fractions and decimals (hundredths).
4. Equivalent fractions and decimals.
5. Thousandths as fractions.
6. Thousandths as decimals.
7. Thousandths on a place value chart.
8. Order and compare decimals (same number of decimal places).
9. Order and compare any decimals with up to 3 decimal places.
10. Round to the nearest whole number.
11. Round to 1 decimal place.
12. Understand percentages.
13. Percentages as fractions.
14. Percentages as decimals.
15. Equivalent fractions, decimals and percentages.

Key Questions:

- What is the same/different about fractions and decimals?
- If a whole is split into 10 equal parts, what is each part worth?
- What does "equivalent" mean?
- What decimal is equivalent to the fractions \qquad ?

Complete the sentences to describe Kim's number

- The fraction represented is \qquad
- The decimal represented is

* The fraction \qquad is equivalent to the decimal \qquad

Each square in the hundred grid represents 1 hundredth. What fraction and what decimal of each hundred square is shaded?

Esther knows that each column in the hundred square is worth $\frac{1}{10}$ She shades some squares and describes the number.

$$
\text { There are } \frac{3}{10} \text { and } \frac{4}{100} \text { shaded. }
$$

This shows the decimals $0.3+0.04$

- What fraction is equivalent to \qquad 0.1s?
- When counting up in $1 / 10 \mathrm{~s} / 0.1 \mathrm{~s}$, what happens after 9/10/0.9?
- How many tenths are there in the number \qquad ?
- What fractions is the decimal \qquad equivalent to?
- What decimal is the fraction \qquad equivalent to?
- What is the value of the digit \qquad in \qquad _?
- What fractions can the decimal \qquad be partitioned into?
- How many tenths/hundredths are equal to 1 whole?
- How many hundredths are equal to 1 tenth?
- The fraction \qquad Stem Sentences:
- The decimal \qquad is equivalent to the decimal \qquad -.
- There are ten \qquad is equivalent to the fraction \qquad -
- There are ___ tenths and \qquad hundredths in \qquad -.

Key

 Vocabulary:tenths fractions decimals equivalent within 1 greater than 1 place value number lines equal parts crossing 1 whole same/different worth hundredths whole
2 decimal places partitioned mixed numbers improper fractions

Small Steps:

1. Decimals up to 2 decimal places.
2. Equivalent fractions and decimals (tenths).
3. Equivalent fractions and decimals (hundredths).
4. Equivalent fractions and decimals.
5. Thousandths as fractions.
6. Thousandths as decimals.
7. Thousandths on a place value chart.
8. Order and compare decimals (same number of decimal places).
9. Order and compare any decimals with up to 3 decimal places.
10. Round to the nearest whole number.
11. Round to 1 decimal place.
12. Understand percentages.
13. Percentages as fractions.
14. Percentages as decimals.
15. Equivalent fractions, decimals and percentages.

Maths - Decimals and Percentages

Key Questions:

- What is 1 whole shared equally into $2 / 4 / 5 / 10$ equal parts?
- How can you tell what each interval on the number line is worth?
- What decimal is equivalent to the fraction \qquad ?
- What fraction is the decimal \qquad equivalent to?
- What is the same and what is different about the fraction \qquad and the decimal \qquad ?

Do you agree with Tiny? Explain your answer.

Explain your answer.

Stem Sentences:

YEAR 5

Key Vocabulary:

equivalent fractions decimals halves quarters fifths tenths divided hundred equal parts number line value unit fraction non-unit fractions fraction wall shared equally interval worth same/different whole

- The decimal \qquad is equivalent to the fraction \qquad _-
\qquad hundredths is equivalent to \qquad
\qquad then I also know that \qquad is

What decimals and fractions are the arrows pointing to?

- If I know that \qquad is equivalent to \qquad
\qquad equivalent to \qquad .

[^2]\qquad

Maths - Decimals and Percentages

Small Steps:

1. Decimals up to 2 decimal places.
2. Equivalent fractions and decimals (tenths).
3. Equivalent fractions and decimals (hundredths).
4. Equivalent fractions and decimals.
5. Thousandths as fractions.
6. Thousandths as decimals.
7. Thousandths on a place value chart.
8. Order and compare decimals (same number of decimal places).
9. Order and compare any decimals with up to 3 decimal places.
10. Round to the nearest whole number
11. Round to 1 decimal place.
12. Understand percentages.
13. Percentages as fractions.
14. Percentages as decimals.
15. Equivalent fractions, decimals and percentages.
||

13 parts are shaded
This represents $\frac{13}{1000}$

Scott uses place value counters to partition $\frac{342}{1000}$

The diagram shows the relationship between tenths, hundredths and thousandths.

Complete the sentences in as many ways as possible.

___ is one-tenth the size of _
 \qquad

___ is 10 times the size of ___

The number 0.254 is made up of 2 tenths, 5 hundredths and 4 thousandths.

Key Questions:

- What is a thousandth?
- How are thousandths similar to/different from tenths/hundredths?
- How many thousandths are there in 1 whole?
- How many thousandths are there in 1 hundredth?
- How many thousandths are there in 1 tenth?
- How can you partition \qquad thousandths?
- What fraction is made up of \qquad tenths, \qquad hundredths and \qquad thousandths?
- Which is greater, 1 hundredths or 9 thousandths? How do you know?
- What does each digit in a decimal number represent?
- How are 0.001 s similar to $1 / 1000$ s? How are they different?
- How many 0.001s are there in 1 whole/0.01/0.1?
- How can you represent 0.001s on a number line?

Stem Sentences:

- There are \qquad thousandths in \qquad .
- $\frac{\square}{1000}$ is equivalent to $\frac{\square}{10}+\frac{\square}{100}+\frac{\square}{1000}$
is 10 times greater than \qquad -.
- \qquad is \qquad in \qquad
- There are
\qquad .
\qquad
\qquad

YEAR 5

Key

 Vocabulary:thousandths tenth whole split equal parts hundredth base 10 place value exchanging partition similar to/different from greater equivalent fractions decimals tenth the size flexibly partition 3 decimal places digit
10 times greater one-tenth the size

Maths - Decimals and Percentages

Small Steps:

1. Decimals up to 2 decimal places.
2. Equivalent fractions and decimals (tenths).
3. Equivalent fractions and decimals (hundredths).
4. Equivalent fractions and decimals.
5. Thousandths as fractions.
6. Thousandths as decimals.
7. Thousandths on a place value chart.
8. Order and compare decimals (same number of decimal places).
9. Order and compare any decimals with up to 3 decimal places.
10. Round to the nearest whole number.
11. Round to 1 decimal place.
12. Understand percentages.
13. Percentages as fractions.
14. Percentages as decimals.
15. Equivalent fractions, decimals and percentages.

Complete the sentences to describe each number.

There are ___ ones.
There are ___ tenths.
There are ___ hundredths.
There are__ thousandths.
The number represented is \qquad
Brett has eight plain counters

He makes numbers using the place value chart.

At least three columns contain counters What is the greatest number he can make?
What is the smallest number he can make?

Key Questions:

- What is a thousandth?
- How many thousandths are equivalent to 1 hundredth?
- How can you represent this decimal number on a place value chart?
- What is the value of the digit \qquad in \qquad $?$
- How does a place value chart help you?
- What do you need to do when there are no counters in a column?

Dora and Ron have partitioned 0.132 in different ways.

$0.132=0.1+0.02+0.012$

Stem Sentences:

- ___ ones, \qquad tenths, \qquad hundredths and \qquad thousandths make the decimal number \qquad .
\qquad can be partitioned into \qquad $+$ \qquad $+$ \qquad .
- I know that \qquad is equivalent to \qquad because...

YEAR 5

Key

Vocabulary:
thousandths
3 decimal places place value column
decimal numbers tenths partition exchanging values
flexibly partition equivalent hundredth

Maths - Decimals and Percentages

Small Steps:

1. Decimals up to 2 decimal places.
2. Equivalent fractions and decimals (tenths).
3. Equivalent fractions and decimals (hundredths).
4. Equivalent fractions and decimals.
5. Thousandths as fractions
6. Thousandths as decimals.
7. Thousandths on a place value chart.
8. Order and compare decimals (same number of decimal places).
9. Order and compare any decimals with up to 3 decimal places.
10. Round to the nearest whole number.
11. Round to 1 decimal place.
12. Understand percentages.
13. Percentages as fractions.
14. Percentages as decimals.
15. Equivalent fractions, decimals and percentages.

Rosie has made the numbers 0.31 and 0.156 on place value charts.

Which number is greater? How do you know?

Write the numbers in ascending order.

Put these lengths in order, from longest to shortest.

Eva is using a number line to order some numbers.

Draw arrows to show the positions of the other numbers.

Write > or < to compare the numbers.
Use a place value chart and counters to help you.

Key Questions:

- How do you compare two numbers?
- Which column in the place value chart do you need to look at first?
- How can you compare two numbers that have the same number of tenths/hundredths?
- Which number is greater, \qquad or \qquad ?
- What does "ascending"|"descending" mean?
- What is the same and what is different about 1.4 and 1.305?
- What are the digits in each number worth?
- How can you represent these numbers on a place value chart?
- Which place value column in the chart has the greatest value? Which has the next greatest value?
- How can a place value chart help to show you which number is greater?
- How can you work systematically to order numbers in a list?

Stem Sentences:

- I need to start by looking at the column with the \qquad place value.
- To compare \qquad and \qquad I need to first look at the \qquad column.
- If the digits in the ___ column are the same, I need to look at the \qquad column.
- ___ is greater/smaller than \qquad because...
- The decimal ___ has a greater value than the decimal \qquad -.
- ___ tenths/hundredths/thousandths are greater than \qquad tenths/hundredths/thousandths, so \qquad is greater than

YEAR 5

Key Vocabulary:

order compare decimals
2 decimal places
3 decimal places place value number lines digits
column greatest value greater digit ascending/descending highest value same/different worth greater/smaller
,
\qquad
\qquad __.

Maths - Decimals and Percentages

Small Steps:

1. Decimals up to 2 decimal places.
2. Equivalent fractions and decimals (tenths).
3. Equivalent fractions and decimals (hundredths).
4. Equivalent fractions and decimals.
5. Thousandths as fractions
6. Thousandths as decimals.
7. Thousandths on a place value chart.
8. Order and compare decimal (same number of decimal places).
9. Order and compare any decimals with up to 3 decimal places.
10. Round to the nearest whole number.
11. Round to 1 decimal place.
12. Understand percentages.
13. Percentages as fractions.
14. Percentages as decimals.
15. Equivalent fractions, decimals and percentages.

Han has used a number line to find that the whole numbers either side of 6.2 are 6 and 7

5.85 .9 (6) 6.16 .26 .36 .46 .56 .66 .76 .86 .9 (7) 7.17 .27 .3

Dan is rounding 4.3 to the nearest whole number using a number line.

$$
4.3 \text { rounded to the nearest whole number is } 4
$$

Aisha has used a number line to find which numbers with 1 decimal place lie either side of 6.16

Teddy has used a number line to find that 2.37 rounded to 1 decimal place is 2.4

Key Questions:

- Which integers (whole numbers) lie either side of this decimal number?
- Where would the decimal \qquad go on this number line?
- How can you work out which whole number a decimal number is closer to?
- Which whole number is the decimal \qquad closer to? How do you know?
- What is halfway between these two whole numbers?
- When a decimal number has fewer than 5 tenths, does it round to the next or previous whole number? How do you know?
- How can you work out what numbers with 1 decimal place are either side of a number with two decimal places?

YEAR 5

Key Vocabulary:

rounding
whole numbers decimal numbers 1/2 decimal places nearest
integers
place value
number line closer to
greater/smaller halfway fewer hundredths column

- Which number with 1 decimal place is your number closer to? How do you know?
- What number is halfway between the two numbers to 1 decimal place?
- How do you round a number that is halfway between the two numbers to 1 decimal place?

Stem Sentences:

- The whole numbers either side of \qquad are \qquad and \qquad -.
\qquad is closer to \qquad than \qquad -.
- ___rounded to the nearest whole number/1 decimal place is \qquad .
- The numbers with 1 decimal place either side of \qquad are \qquad and \qquad
- Halfway between \qquad and \qquad is ____ \qquad
\square -
- hag way between \qquad -

Maths - Decimals and Percentages

Small Steps:

1. Decimals up to 2 decimal places.
2. Equivalent fractions and decimals (tenths).
3. Equivalent fractions and decimals (hundredths).
4. Equivalent fractions and decimals.
5. Thousandths as fractions.
6. Thousandths as decimals.
7. Thousandths on a place value chart.
8. Order and compare decimals (same number of decimal places).
9. Order and compare any decimals with up to 3 decimal places.
10. Round to the nearest whole number.
11. Round to 1 decimal place.
12. Understand percentages.
13. Percentages as fractions.
14. Percentages as decimals.
15. Equivalent fractions, decimals and percentages.

The hundred square has 1 part shaded. This is 1%.

\oiiint	

How many parts of each hundred square are shaded?

What percentage of each hundred square is shaded?
The bar model has been split into 10 equal parts and 1 part is shaded.
This is 10\%:

What percentage of each bar model is shaded?

Key Questions:

- How many parts is the square split into?
- How many parts per hundred are shaded/not shaded?
- What percentage of the square is shaded/not shaded?
- What does " 100% " mean?
- How many parts is the bar model split into?
- If the whole bar represents 100%, what is each part worth?

YEAR 5 Key Vocabulary:
percentages "per cent" parts hundred whole split equal parts hundredths bar models

Do you agree with Whitney? Explain your answer.

Stem Sentences:

- If the whole is shared into 100 equal parts, then each part represents \qquad \%.
- If the whole if shared into 10 equal parts, then each part represents \qquad \%.
\qquad out of \qquad equal parts are shaded. The percentage shaded is \qquad \%.

Maths - Decimals and Percentages

Small Steps:

1. Decimals up to 2 decimal places.
2. Equivalent fractions and decimals (tenths).
3. Equivalent fractions and decimals (hundredths).
4. Equivalent fractions and decimals.
5. Thousandths as fractions.
6. Thousandths as decimals.
7. Thousandths on a place value chart.
8. Order and compare decimals (same number of decimal places).

Complete the sentence to find what fraction and what percentage of each hundred square has been shaded

_ parts out of $100=\frac{\square}{100}=$
_ $\%$

Use the models to complete the statements.

$>0.8=\quad$ \%
$\downarrow-\quad=100 \%$

Mo uses a 100 -piece bead string to represent 100%.

Key Questions:

- What is a percentage?
- If the whole is split into 100 equal parts, then what percentage is \qquad parts equivalent to?
- How are percentages and fractions similar? How are they different?
- What is 100 divided by $2 / 4 / 5 / 10$?
- What is ___ as a percentage?
- What is one half of 100 ? What is $1 / 2$ as a percentage?
- What is similar/different about percentages and decimals?
- How many tenths/hundredths/per cent are equal to 1 whole?
- What percentage is equal to one hundredths? What is one hundredth as a decimal?
- What percentage is equal to one tenth? What is one tenth as a decimal?

YEAR 5

Key
 Vocabulary:

percentages fractions parts per hundred denominator equivalent
fraction wall split groups
within 1 whole divided half decimals
place value equal parts
similar/different tenths
hundredths
9. Order and compare any decimals with up to 3 decimal places.
10. Round to the nearest whole number.
11. Round to 1 decimal place.
12. Understand percentages.
13. Percentages as fractions.
14. Percentages as decimals.
15. Equivalent fractions, decimals and percentages.

What is the missing part?
Give your answer as a decimal and as a percentage.

Stem Sentences:

- ___ \% is equivalent to $\frac{\square}{100}$
- The fraction \qquad is equivalent to \qquad \%.
$=$ \qquad tenths/hundredths in 1 whole.
- There are \qquad
- ___ $\%$ is equivalent to 1 whole.

Maths - Decimals and Percentages

Small Steps:

1. Decimals up to 2 decimal places.
2. Equivalent fractions and decimals (tenths).
3. Equivalent fractions and decimals (hundredths).
4. Equivalent fractions and decimals.
5. Thousandths as fractions.
6. Thousandths as decimals.
7. Thousandths on a place value chart.
8. Order and compare decimals (same number of decimal places).
9. Order and compare any decimals with up to 3 decimal places.
10. Round to the nearest whole number.
11. Round to 1 decimal place.
12. Understand percentages.
13. Percentages as fractions.
14. Percentages as decimals.
15. Equivalent fractions, decimals and percentages.

Use the bar model to help you complete the equivalence statements.

Complete the bar model to help find the equivalents.

Complete the number line to show the equivalents.

Key Questions:

- How can you find the fraction equivalent of a percentage?
- How can you find the decimal equivalent of a percentage?
- How many pats has the whole been split up into? So what fraction is each part worth?
- If the whole is 100%, what is $1 / 10$?
- If $1 / 10$ is equal to 10%, what is $3 / 10$ equal to?

Are the statements true or false?

0.5<25% because 5 is less than 25
0.5<25% because 5 is less than 25

Stem Sentences:

The whole has been split into ___ equal parts, so each part is worth $\frac{1}{\square}$ If the whole is equal to 100%, then each part if worth \qquad \%.

YEAR 5

Key

 Vocabulary:equivalents fractions decimals
percentages halves quarters fifths tenths equal parts hundredths unit fraction non-unit fractions numbers lines bar models whole equal to worth

Maths - Perimeter and Area

Small Steps:

1. Perimeter of rectangles.
2. Perimeter of rectilinear shapes.
3. Perimeter of polygons.
4. Area of rectangles,
5. Area of compound shapes.
6. Estimate area.

Esther thinks that she has drawn all the possible rectangles with a perimeter of 24 cm .

Do you agree with Esther? Explain your answer.

What is the length of each line?

Measure the sides of the rectangles to work out their perimeters.

\qquad $\mathrm{cm}+$ \qquad m + \qquad $\mathrm{cm}=$ \qquad cm

Rosie and Eva are finding the perimeter of this rectangle.

What is the same about the methods? What is different?

Key Questions:

- What does perimeter mean?
- If a rectangle has a perimeter of 16 cm , could its length be 10 cm ? Why or why not?
- Once you have measured the sides, how do you work out the perimeter?
- If you know the length and width of a rectangle, do you need to measure the other two sides?
- Which method do you think is more efficient?

Explain your answer.
Teddy thinks this chew bar is 13.2 cm long.

Do you agree?
Explain your answer.

Stem Sentences:

- The length is \qquad and the width is \qquad , so the perimeter is \qquad -.
-
- \qquad $+$ \qquad $+$ \qquad $=2 \mathrm{x}$ \qquad $+2 \mathrm{x}$ \qquad
\qquad
- The perimeter of the rectangle is.

Maths - Perimeter and Area

Small Steps:

1. Perimeter of rectangles.
2. Perimeter of rectilinear shapes.
3. Perimeter of polygons.
4. Area of rectangles.
5. Area of compound shapes.
6. Estimate area.

Tiny is finding the perimeter of this shape.

I have enough information to find the perimeter.

Do you agree with Tiny?
Explain your answer.

Work out the perimeters of the shapes.

What do you notice?

Work out the perimeters of the shapes.

What do you notice?

Key Questions:

- What does perimeter mean?
- What are the properties of a square/rectangle?
- Why is this a rectilinear shape?
- How can you use the labelled sides to find the unknown side of the rectilinear shape? Do you need to add or subtract?
- What strategies can you use to work out the perimeter?
- How do you know that you have included all the sides?
- What is the perimeter of the shape?

Find the unknown lengths (shown in red) and then the perimeter of each shape.

Stem Sentences:

 , so the longer side $=$ \qquad- The perimeter of the shape is \qquad

YEAR 5

Key

Vocabulary:
perimeter rectilinear shape
straight sides right angles rectangles joined
compound shape calculating total square add/subtract strategies longer/shorter properties

Maths - Perimeter and Area

Small Steps:

1. Perimeter of rectangles.
2. Perimeter of rectilinear shapes.
3. Perimeter of polygons.
4. Area of rectangles,
5. Area of compound shapes.
6. Estimate area.

Here is a square inside another square.

One side of the inner square is 4 cm long.
The perimeter of the outer square is four times the perimeter of the inner square.

What is the length of one side of the outer square?
Show your workings.

Work out the perimeter of each regular shape.

Key Questions:

- What is a regular shape?
- What is the difference between a square and a rectangle?
- Are all rectangles regular?
- How many sides does the shape have?
- What calculation will give you its perimeter?
- Would drawing the shape help you to solve the problem?
- What operation are you going to use? Why?
A school stage is made up of two parts.

The larger part has a perimeter of 24 m and a length of 8 m .
The smaller part has a perimeter of 16 m and a length of 4 m .

Find the actual perimeter of the stage

Stem Sentences:

- A \qquad shape has equal sides and angles.
- The regular shape has \qquad sides and each side is \qquad -. Therefore, the perimeter is \qquad _ x \qquad = \qquad _.
- To find the perimeter of the shape, I need to...
- The perimeter of the shape is ...

Tom wants to find the perimeter of a swimming pool,
The length of the pool is three times the width
The width is 16 m .
What is the length of the swimming pool?
What is the perimeter of the swimming pool?

YEAR 5

Key

Vocabulary:
perimeter polygons 2-D
two dimensional shape straight sides regular irregular
equal
angles
square rectangle length multiplying adding known values problem solving difference calculation operation straight gular

Maths - Perimeter and Area

Small Steps:

1. Perimeter of rectangles.
2. Perimeter of rectilinear shapes.
3. Perimeter of polygons
4. Area of rectangles
5. Area of compound shapes.
6. Estimate area.

Each orange square (O) has an area of $24 \mathrm{~cm}^{2}$

0		B	
		B	
B		\bigcirc	
B	B		
		G	G
		G	G

Calculate the total orange area. Calculate the blue (B) area. Calculate the green (G) area. What is the total area of the whole shape?

Key Questions:

- What is area?
- What is the difference between 1 cm and 1 cm 2 ?
- Which shape has the greater/greatest are? Can you tell just by looking?
- How can you work out area in a more efficient way?
- Will multiplying the length by the width calculate the area of any shape? Why/why not?

Complete the sentences to find the area of the rectangle.

What do you notice?

The area of the rectangle is $18 \mathrm{~cm}^{2}$

What is the width of the rectangle?

Stem Sentences:

- There are \qquad squares inside the shape, so the area of the shape is
\qquad squares.
- Area $=$ \qquad x \qquad
- _ X \qquad $=$ \qquad so the area of the shape is

YEAR 5

Key

Vocabulary:
area
inside
2-D
two dimensional shape counting squares
Centimetre squared arrays cm2 multiply length width calculate rectangle difference
greater/greatest efficient
\qquad _.

Maths - Perimeter and Area

Small Steps:

1. Perimeter of rectangles.
2. Perimeter of rectilinear shapes.
3. Perimeter of polygons.
4. Area of rectangles,
5. Area of compound shapes.
6. Estimate area.

Tiny puts three 7 cm by 4 cm rectangles next to each other.

What is the area of the compound shape?

It does not matter
which way round I put the rectangles. The shape will still have the same area. have the same area.

Do you agree with Tiny? Explain your reasoning.

A compound shape is made up of two rectangles, A and B.

What is the area of A?

- What is the area of B?
- What is the area of the compound shape?

Find the area of the compound shape.

How many ways can you split the compound shape in order to work out the area?

Compare methods with a partner.

Find the areas of the compound shapes.

Key Questions:

- How do you work out the area of a rectangle?
- Are there any rectangles within the shape?
- How can you split the shape?
- Is there more than one way to split the shape?
- Do you get a different total area if you split the shape differently?

Whitney has found the area of this compound shape.

Explain why Whitney's method works. Use Whitney's method to find the area of the shape.

YEAR 5

Key

Vocabulary:
calculate area
compound shapes
rectilinear rectangle deduce total lengths widths

Stem Sentences:

- To find the area of the compound shape, I need to split it into ___ and then...
- Area of rectangle $A=$ \qquad .
- Area of rectangle $B=$ \qquad $=$
\qquad
- Total area = \qquad $+$ \qquad

Maths - Perimeter and Area

Small Steps:

1. Perimeter of rectangles.
2. Perimeter of rectilinear shapes.
3. Perimeter of polygons.
4. Area of rectangles.
5. Area of compound shapes.
6. Estimate area.

Amir is finding the area of the shape.

Do you agree with Amir? Explain your answer

Jack estimates the size of the pond as $8 \mathrm{~m}^{2}$

How do you think Jack made his estimate?
Here is a shape on a centimetre squared grid.

- How many full squares are covered?
- How many squares are more than half covered?
- Estimate the area of the shape.

Which area was easier to estimate? Why?
Compare answers with a partner.

Key Questions:

- What does "approximate" mean?
- What does "estimate" mean?
- How many whole squares are covered?
- How many part squares are more than half covered?
- Are there any part-covered squares that you could combine to make a full square?
- Does it matter if your answer is not exactly the same as a partners? Why? Why not?

Use centimetre squared paper.
Draw a "Pirate Island" to be used as a treasure map.
Each square represents $4 \mathrm{~m}^{2}$

Stem Sentences:

- \qquad whole squares are covered.
- -__squares are more than half covered.
- Estimate of the total area $=$ \qquad $+$ \qquad $+$ \qquad cm2.

The Pirate Island must have a total area of $240 \mathrm{~m}^{2}$

The island must include these features:

- lake with a total area of $58 \mathrm{~m}^{2}$
- forests with a total area of $86 \mathrm{~m}^{2}$
- mountains with a total area of $92 \mathrm{~m}^{2}$
- marshes with a total area of $12 \mathrm{~m}^{2}$
\qquad

YEAR 5

Key

Vocabulary:
counting squares estimate areas
non-rectilinear shapes total square half fractions covered larger multiplying length width wholes match approximate combine教都

Maths - Statistics

Small Steps:

1. Draw line graphs.
2. Read and interpret line graphs.
3. Read and interpret tables.
4. Two-way tables.
5. Read and interpret timetables.

Scott records the temperature every day for a week.
Use his results to draw the line graph.

Day	Temperature $\left({ }^{\circ} \mathrm{C}\right)$
Monday	2
Tuesday	3
Wednesday	3
Thursday	5
Friday	4
Saturday	2
Sunday	1

Key Questions:

- What information do you want to show with your line graph?
- What does the vertical/horizontal axis on the graph represent?
- What information will go on which axis? Why?
- Will you join the points with a solid line or a dashed line? Why?
- What scale would be most appropriate for the vertical axis?
- How can you use multiples to support your choice of intervals for the vertical axis?
What information is being presented on the line graph? What does each axis on the line graph show?
How can you summarise what the graph shows?
What lines can you draw to help read the graph?
Why do you think the direction of the line changes at this point in the line graph?
Is your answer exact or an estimate?
Stem Sentences:
The horizontal axis shows \qquad -
The vertical axis shows \qquad .
The intervals on the vertical axis go up in \qquad __.
The horizontal axis shows \qquad and the vertical axis shows \qquad —.
At \qquad , the graph reads \qquad _-.
At \qquad the graph reads \qquad
The difference between the two points are \qquad

YEAR 5

Key

 Vocabulary:interpret line graph horizontal
vertical
axis
measure
straight dashed line exact values

data

intervals
greatest/lowest appropriate scale information solid line multiples solve problems
variable
difference
points
inferences
estimating
summarise

- In what years was the population recorded? How do you know?
- What was the population in $1985 ?$

Maths - Statistics

Small Steps:

1. Draw line graphs.
2. Read and interpret line graphs.
3. Read and interpret tables.
4. Two-way tables.
5. Read and interpret timetables.

Mo collects information from children about their favourite colour.
He puts the information into a table.

Colour	Red	Yellow	Green	Blue	Orange	Purple
Number of children	3	7	5	17	6	7

- How many children prefer orange?
- What is the most popular colour?
- What is the least popular colour?
- How many children did Mo ask?
- How many more children like purple than like green?

What other questions could you ask about this table?

Key Questions:

- What information is given in this table?
- What are the column/row headings of the table?
- Why is it important to include the units of measure in the table?
- What is the total of \qquad ?
- How can you find the difference between two pieces of information given in the table?
- How is a table similar to/different from a line graph?

Here is a table with information about four planets.

Planet	Time for revolution	Diameter (km)	Time for rotation
Mercury	88 days	4,878	59 days
Venus	225 days	12,104	116 days
Earth	365 days	12,756	24 hours
Mars	687 days	6,794	25 hours

- How many of the planets take more than one day to rotate?
- Which planet takes more than one year for one revolution?

Stem Sentences:

- The value in \qquad is \qquad -
- The value in \qquad is \qquad
- The difference between the values is \qquad
- The \qquad with the most/least \qquad is \qquad
\qquad

YEAR 5

Key

 Vocabulary:interpret data presented tables extract
retrieval questions comparing amounts inferring grouping addition subtraction comparisons column row headings units of measure difference
similar to/different from line graph value most/least

The toble shows the six largest football stadiums in Europe.

Stadium	City	Country	Capacity
Camp Nou	Barcelona	Spain	99,365
Wembley	London	UK	90,000
Signal Iduna Park	Dortmund	Germany	81,359
Estadio Santiogo Bernabeu	Madrid	Spain	81,044
Luzhniki Stadium	Moscow	Russia	81,006
San Siro	Milan	Italy	80,018

Maths - Statistics

Small Steps:

1. Draw line graphs.
2. Read and interpret line graphs.
3. Read and interpret tables.
4. Two-way tables.
5. Read and interpret timetables.

The two-way table shows the staff at a police station.

	No glasses	Glasses	Total
Constable	55	24	79
Sergeant	8	5	13
Inspector	2	4	6
Chief Inspector	1	1	2
Total	66	34	100

- How many inspectors wear glasses?
- How many sergeants do not wear glasses?
- How many constables are there altogether?
- How many people work at the police station?

The table shows the types of sandwiches chosen by a group of children on a school trip.

	White bread	Brown bread	Total
Ham		15	25
Cheese	13		35
Jam		8	17
Tuna	15		23
Total			

The table shows some information about how children in Key Stage 1 and Key Stage 2 travel to school each morning.

	KS1	KS2	Total
Walk		95	118
Car	45		70
Bus	9	27	
Bike		56	56
Total			

- Complete the table.
$\frac{1}{5}$ of the
children asked for a ham sandwich on white bread.

Key Questions:

- What information is given by this table?
- What are the column/row headings for the table?
- How can you find the difference between two pieces of information given in the table?
- How can you work out the missing information in the table?
- Do you need to add or subtract? How do you know?
- What conclusions can you draw from the table?

The table shows information about type of pet and the pet's gender.

	Male	Female	Total
Dogs		44	
Cats	38		
Total	125		245

Fill in the missing numbers in the table.

- How many more male dogs are there than female dogs?
- How many more female cats are there than male cats?

Stem Sentences:

- The columns show \qquad and the rows show \qquad _.
- Where the \qquad column meets the \qquad row, this shows \qquad - \qquad _.
- To find a missing total, I need to \qquad the numbers in a \qquad or
\qquad from \qquad —.
two-way tables variable cell
horizontal vertical labels total column/row headings difference add/subtract conclusions
- To find the missing value, I need to \qquad -

YEAR 5

Key

Vocabulary:

Maths - Statistics

Small Steps:

1. Draw line graphs.
2. Read and interpret line graphs.
3. Read and interpret tables.
4. Two-way tables.
5. Read and interpret timetables.

Here is part of a train timetable.

London Euston	$06: 35$	$15: 10$	$16: 10$	$18: 40$
Watford Junction	$06: 50$	$15: 25$	$16: 25$	$18: 55$
Milton Keynes Central	$07: 10$		$16: 50$	
Northampton	$07: 15$	$15: 55$	$16: 55$	$19: 25$
Rugby	$07: 24$	$16: 04$	$17: 04$	$19: 34$
Coventry	$07: 44$	$16: 14$	$17: 13$	$19: 43$
Birmingham New Street	$08: 09$	$16: 41$	$16: 41$	$20: 11$

Key Questions:

- What information does this timetable tell you?
- How is a timetable the same as/different from a twoway table?
- What is the same and what is different about each row/column of the timetable?
- What does the \qquad ro
\qquad from \qquad get to \qquad ?
- At what time does the are there?
- How many \qquad
- What does a blank space in a timetable mean?

YEAR 5

Key

Vocabulary:
timetables
two-way table interpret
calculations
information
same as/different from
row/column

- What time does the 15:10 train from London Euston get to Coventry?
- Annie gets on the train at Northampton.

How many stops are there before she gets to Birmingham New Street?

- Ron gets a train from Watford Junction to Rugby.

He arrives in Rugby at 16:04
What time did he get on the train?
-Why are some parts of the table blank?

This is Alex's school timetable.

- How many Literacy lessons does Alex have in a week?
- Which afternoons does she only have one subject?
- How many more Maths lessons does Alex have in a week than ICT lessons?
- At what time does Alex's Science lesson on Friday start?

What other questions can you think of for Alex's timetable?

Stem Sentences:

- The \qquad train from \qquad gets to \qquad at \qquad -
- The next available \qquad is at \qquad
- The journey/lesson/programme starts at \qquad and ends at \qquad

[^0]: What is the same and what is different?

[^1]: Use the number line to help you add 99 to 687

[^2]: (

